删除相关文件

This commit is contained in:
wangmeihua 2025-07-28 10:55:08 +08:00
parent 08fac45422
commit 22ad6e48fd
15 changed files with 0 additions and 2836 deletions

View File

@ -1,290 +0,0 @@
import os
import logging
import yaml
import numpy as np
from typing import List, Dict, Any
from pymilvus import Collection, utility
from langchain_huggingface import HuggingFaceEmbeddings
from vector import initialize_milvus_connection
from searchquery import extract_entities, match_triplets
from rerank import rerank_results
import torch
import time
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
except Exception as e:
raise RuntimeError(f"无法加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
logger.handlers.clear()
logger.propagate = False
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
try:
with open(config['logging']['file'], 'a', encoding='utf-8') as f:
pass
except Exception as e:
raise RuntimeError(f"日志文件 {config['logging']['file']} 不可写: {str(e)}")
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
# 初始化嵌入模型
embedding = HuggingFaceEmbeddings(
model_name=TEXT_EMBEDDING_MODEL,
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
try:
test_vector = embedding.embed_query("test")
if len(test_vector) != 1024:
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
logger.debug("嵌入模型加载成功")
except Exception as e:
logger.error(f"嵌入模型加载失败: {str(e)}")
raise RuntimeError(f"嵌入模型加载失败: {str(e)}")
# 缓存三元组
TRIPLET_CACHE = {}
def load_triplets_to_cache(userid: str, document_id: str) -> List[Dict]:
"""加载三元组到缓存"""
cache_key = f"{document_id}_{userid}"
if cache_key in TRIPLET_CACHE:
logger.debug(f"从缓存加载三元组: {cache_key}")
return TRIPLET_CACHE[cache_key]
triplet_file = f"/share/wangmeihua/rag/triples/{document_id}_{userid}.txt"
triplets = []
try:
with open(triplet_file, 'r', encoding='utf-8') as f:
for line in f:
parts = line.strip().split('\t')
if len(parts) < 3:
continue
head, type_, tail = parts[:3]
triplets.append({'head': head, 'type': type_, 'tail': tail})
TRIPLET_CACHE[cache_key] = triplets
logger.debug(f"加载三元组文件: {triplet_file}, 数量: {len(triplets)}")
return triplets
except Exception as e:
logger.error(f"加载三元组失败: {triplet_file}, 错误: {str(e)}")
return []
def fused_search(
query: str,
userid: str,
db_type: str,
file_paths: List[str],
limit: int = 5,
offset: int = 0,
use_rerank: bool = True
) -> List[Dict[str, Any]]:
"""
融合 RAG 和三元组召回文本块
- 收集所有输入文件的三元组拼接为融合文本向量化后在所有文件中搜索
- 结果去重并按 rerank_score distance 排序重排序使用融合文本
参数:
query (str): 查询文本
userid (str): 用户 ID
db_type (str): 数据库类型 (e.g., 'textdb')
file_paths (List[str]): 文件路径列表
limit (int): 返回结果数量
offset (int): 偏移量
use_rerank (bool): 是否使用重排序
返回:
List[Dict[str, Any]]: 召回结果包含 textdistancesourcemetadatarerank_score
"""
try:
logger.info(f"开始融合搜索: query={query}, userid={userid}, db_type={db_type}")
start_time = time.time()
# 参数验证
if not query or not userid or not db_type or not file_paths:
raise ValueError("query、userid、db_type 和 file_paths 不能为空")
if "_" in userid or "_" in db_type:
raise ValueError("userid 和 db_type 不能包含下划线")
# 初始化 Milvus 连接
connections = initialize_milvus_connection()
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
return []
collection = Collection(collection_name)
collection.load()
logger.debug(f"加载 Milvus 集合: {collection_name}")
# 提取实体
entity_start = time.time()
query_entities = extract_entities(query)
logger.debug(f"提取实体: {query_entities}, 耗时: {time.time() - entity_start:.3f}s")
# 收集所有文件的 document_id 和三元组
doc_id_map = {}
filenames = []
all_triplets = []
for file_path in file_paths:
filename = os.path.basename(file_path)
filenames.append(filename)
logger.debug(f"处理文件: {filename}")
# 获取 document_id
results_query = collection.query(
expr=f"userid == '{userid}' and filename == '{filename}'",
output_fields=["document_id"],
limit=1
)
if not results_query:
logger.warning(f"未找到 userid {userid} 和 filename {filename} 对应的文档")
continue
document_id = results_query[0]["document_id"]
doc_id_map[filename] = document_id
load_triplets_to_cache(userid, document_id)
# 获取匹配的三元组
triplet_start = time.time()
matched_triplets = match_triplets(query, query_entities, userid, document_id)
logger.debug(
f"文件 {filename} 匹配三元组: {len(matched_triplets)} 条, 耗时: {time.time() - triplet_start:.3f}s")
all_triplets.extend(matched_triplets)
if not doc_id_map:
logger.warning("未找到任何有效文档")
return []
# 拼接融合文本
triplet_texts = []
for triplet in all_triplets:
head = triplet['head']
type_ = triplet['type']
tail = triplet['tail']
if not head or not type_ or not tail:
logger.debug(f"无效三元组: {triplet}")
continue
triplet_texts.append(f"{head} {type_} {tail}")
# 定义融合文本
fused_text = query if not triplet_texts else f"{query} {' '.join(triplet_texts)}"
logger.debug(f"融合文本: {fused_text}, 三元组数量: {len(triplet_texts)}")
# 向量化
embed_start = time.time()
query_vector = embedding.embed_query(fused_text)
query_vector = np.array(query_vector) / np.linalg.norm(query_vector)
logger.debug(f"生成融合向量,维度: {len(query_vector)}, 耗时: {time.time() - embed_start:.3f}s")
# Milvus 搜索
expr = f"userid == '{userid}' and filename in {filenames}"
search_params = {"metric_type": "COSINE", "params": {"nprobe": 10}}
milvus_start = time.time()
milvus_results = collection.search(
data=[query_vector],
anns_field="vector",
param=search_params,
limit=100,
expr=expr,
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
offset=offset
)
logger.debug(f"Milvus 搜索耗时: {time.time() - milvus_start:.3f}s")
results = []
for hits in milvus_results:
for hit in hits:
result = {
"text": hit.entity.get("text"),
"distance": hit.distance,
"source": "fused_query" if not triplet_texts else f"fused_triplets_{len(triplet_texts)}",
"metadata": {
"userid": hit.entity.get("userid"),
"document_id": hit.entity.get("document_id"),
"filename": hit.entity.get("filename"),
"file_path": hit.entity.get("file_path"),
"upload_time": hit.entity.get("upload_time"),
"file_type": hit.entity.get("file_type")
}
}
results.append(result)
logger.debug(
f"召回: text={result['text'][:100]}..., distance={result['distance']}, filename={result['metadata']['filename']}")
# 去重
unique_results = []
seen_texts = set()
for result in results:
text = result['text']
if not text:
logger.warning(f"发现空文本结果: {result['metadata']}")
continue
if text in seen_texts:
logger.debug(f"移除重复文本: text={text[:100]}..., filename={result['metadata']['filename']}")
continue
seen_texts.add(text)
unique_results.append(result)
logger.info(f"去重后结果数量: {len(unique_results)} (原始数量: {len(results)})")
# 可选:重排序
if use_rerank and unique_results:
logger.debug("开始重排序")
logger.debug(f"重排序查询: {fused_text}")
rerank_start = time.time()
reranked_results = rerank_results(fused_text, unique_results)
reranked_results = sorted(reranked_results, key=lambda x: x.get('rerank_score', 0), reverse=True)
logger.debug(f"重排序分数分布: {[round(r.get('rerank_score', 0), 3) for r in reranked_results]}")
logger.debug(f"重排序耗时: {time.time() - rerank_start:.3f}s")
for i, result in enumerate(reranked_results):
logger.debug(
f"排序结果 {i + 1}: text={result['text'][:100]}..., distance={result['distance']}, rerank_score={result.get('rerank_score', 'N/A')}")
logger.info(f"总耗时: {time.time() - start_time:.3f}s")
return reranked_results[:limit]
# 按 distance 降序排序
sorted_results = sorted(unique_results, key=lambda x: x['distance'], reverse=True)
for i, result in enumerate(sorted_results):
logger.debug(f"排序结果 {i + 1}: text={result['text'][:100]}..., distance={result['distance']}")
logger.info(f"总耗时: {time.time() - start_time:.3f}s")
return sorted_results[:limit]
except Exception as e:
logger.error(f"融合搜索失败: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return []
if __name__ == "__main__":
query = "什么是知识抽取?"
userid = "testuser1"
db_type = "textdb"
file_paths = [
"/share/wangmeihua/rag/data/test.docx",
"/share/wangmeihua/rag/data/zongshu.pdf",
"/share/wangmeihua/rag/data/qianru.pdf",
]
try:
results = fused_search(query, userid, db_type, file_paths, limit=10, offset=0)
for i, result in enumerate(results):
print(f"Result {i + 1}:")
print(f"Text: {result['text'][:200]}...")
print(f"Distance: {result['distance']:.3f}")
print(
f"Rerank Score: {result.get('rerank_score', 'N/A') if isinstance(result.get('rerank_score'), (int, float)) else 'N/A':.3f}")
print(f"Source: {result['source']}")
print(f"Metadata: {result['metadata']}\n")
except Exception as e:
print(f"搜索失败: {str(e)}")

View File

@ -1,190 +0,0 @@
import os
import yaml
import logging
from typing import List, Dict
from pymilvus import connections, Collection, utility
from langchain_huggingface import HuggingFaceEmbeddings
from query import search_query
from searchquery import searchquery
from rerank import rerank_results
from vector import initialize_milvus_connection, cleanup_milvus_connection
import torch
from functools import lru_cache
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
MILVUS_DB_PATH = config['database']['milvus_db_path']
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
except Exception as e:
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
raise RuntimeError(f"加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
logger.handlers.clear() # 清除现有处理器
logger.propagate = False # 禁用传播
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
# 初始化嵌入模型(缓存)
@lru_cache(maxsize=1000)
def get_embedding(text: str) -> List[float]:
embedding = HuggingFaceEmbeddings(
model_name=TEXT_EMBEDDING_MODEL,
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
vector = embedding.embed_query(text)
if len(vector) != 1024:
raise ValueError(f"嵌入模型输出维度 {len(vector)} 不匹配预期 1024")
return vector
def combined_search(query: str, userid: str, db_type: str, file_paths: List[str], limit: int = 10, offset: int = 0) -> List[Dict]:
"""
结合 RAG 和三元组检索召回相关文本块使用 BGE Reranker 重排序
参数:
query (str): 查询文本
userid (str): 用户ID
db_type (str): 数据库类型
file_paths (List[str]): 文档路径列表
limit (int): 返回的最大结果数默认为 10
offset (int): 偏移量默认为 0
返回:
List[Dict]: 包含 textdistancesourcemetadata rerank_score 的结果列表
"""
try:
# 参数验证
if not query or not userid or not db_type or not file_paths:
raise ValueError("query、userid、db_type 和 file_paths 不能为空")
if "_" in userid or "_" in db_type:
raise ValueError("userid 和 db_type 不能包含下划线")
if len(userid) > 100 or len(db_type) > 100:
raise ValueError("userid 或 db_type 的长度超出限制")
if limit <= 0 or limit > 16384:
raise ValueError("limit 必须在 1 到 16384 之间")
if offset < 0:
raise ValueError("offset 不能为负数")
if limit + offset > 16384:
raise ValueError("limit + offset 不能超过 16384")
for file_path in file_paths:
if not isinstance(file_path, str):
raise ValueError(f"file_path 必须是字符串: {file_path}")
if len(os.path.basename(file_path)) > 255:
raise ValueError(f"文件名长度超出 255 个字符: {file_path}")
# 初始化 Milvus 连接
initialize_milvus_connection()
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
return []
# RAG 检索,使用默认 limit=3
rag_results = search_query(query, userid, db_type, file_paths, offset=offset)
for result in rag_results:
result['source'] = 'rag'
logger.info(f"RAG 检索返回 {len(rag_results)} 条结果")
# 三元组检索,使用默认 limit=3
triplet_results = searchquery(query, userid, db_type, file_paths, offset=offset)
for result in triplet_results:
result['source'] = 'triplet'
logger.info(f"三元组检索返回 {len(triplet_results)} 条结果")
# 记录三元组检索结果详情
for idx, result in enumerate(triplet_results, 1):
logger.debug(f"三元组结果 {idx}: text={result['text'][:200]}..., distance={result['distance']:.4f}, metadata={result['metadata']}")
# 合并结果
all_results = rag_results + triplet_results
if not all_results:
logger.warning("RAG 和三元组检索均无结果")
return []
# 记录合并前的结果
logger.debug("合并前结果:")
for idx, result in enumerate(all_results, 1):
logger.debug(f"结果 {idx} ({result['source']}): text={result['text'][:200]}..., distance={result['distance']:.4f}, metadata={result['metadata']}")
# 使用 BGE Reranker 重排序
reranked_results = rerank_results(query, all_results, top_k=len(all_results))
# 按 rerank_score 排序(不去重)
sorted_results = sorted(reranked_results, key=lambda x: x['rerank_score'], reverse=True)
# 记录排序后的结果
logger.debug("重排序后结果:")
for idx, result in enumerate(sorted_results, 1):
logger.debug(f"排序结果 {idx} ({result['source']}): text={result['text'][:200]}..., distance={result['distance']:.4f}, rerank_score={result['rerank_score']:.6f}, metadata={result['metadata']}")
# 去重(基于 text保留 rerank_score 最大的记录)
unique_results = []
text_to_result = {}
for result in sorted_results:
text = result['text']
if text not in text_to_result or result['rerank_score'] > text_to_result[text]['rerank_score']:
text_to_result[text] = result
unique_results = list(text_to_result.values())
# 记录去重后的结果
logger.debug("去重后结果:")
for idx, result in enumerate(unique_results, 1):
logger.debug(f"去重结果 {idx} ({result['source']}): text={result['text'][:200]}..., distance={result['distance']:.4f}, rerank_score={result['rerank_score']:.6f}, metadata={result['metadata']}")
# 限制结果数量
final_results = unique_results[:limit]
logger.info(f"合并后返回 {len(final_results)} 条唯一结果")
# 移除 weighted_score 字段(若存在),保留 rerank_score 和 source
for result in final_results:
result.pop('weighted_score', None)
return final_results
except Exception as e:
logger.error(f"合并搜索失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
return []
finally:
cleanup_milvus_connection()
if __name__ == "__main__":
# 测试代码
query = "知识图谱构建需要什么技术?"
userid = "testuser1"
db_type = "textdb"
file_paths = [
"/share/wangmeihua/rag/data/test.docx",
"/share/wangmeihua/rag/data/zongshu.pdf",
"/share/wangmeihua/rag/data/qianru.pdf"
]
limit = 10
offset = 0
try:
results = combined_search(query, userid, db_type, file_paths, limit, offset)
print(f"搜索结果 ({len(results)} 条):")
for idx, result in enumerate(results, 1):
print(f"结果 {idx}:")
print(f"内容: {result['text'][:200]}...")
print(f"距离: {result['distance']}")
print(f"来源: {result['source']}")
print(f"重排序分数: {result['rerank_score']}")
print(f"元数据: {result['metadata']}")
print("-" * 50)
except Exception as e:
print(f"搜索失败: {str(e)}")

View File

@ -1,138 +0,0 @@
import logging
import yaml
import os
from pymilvus import connections, Collection, utility
from vector import initialize_milvus_connection
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
MILVUS_DB_PATH = config['database']['milvus_db_path']
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
except Exception as e:
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
raise RuntimeError(f"无法加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
for handler in (logging.FileHandler(config['logging']['file'], encoding='utf-8'), logging.StreamHandler()):
handler.setFormatter(formatter)
logger.addHandler(handler)
def delete_document(db_type: str, userid: str, filename: str) -> bool:
"""
根据 db_typeuserid filename 删除用户的指定文件数据
参数:
db_type (str): 数据库类型 'textdb', 'pptdb'
userid (str): 用户 ID
filename (str): 文件名 'test.docx'
返回:
bool: 删除是否成功
异常:
ValueError: 参数无效
RuntimeError: 数据库操作失败
"""
try:
# 参数验证
if not db_type or "_" in db_type:
raise ValueError("db_type 不能为空且不能包含下划线")
if not userid or "_" in userid:
raise ValueError("userid 不能为空且不能包含下划线")
if not filename:
raise ValueError("filename 不能为空")
if len(db_type) > 100 or len(userid) > 100 or len(filename) > 255:
raise ValueError("db_type、userid 或 filename 的长度超出限制")
# 初始化 Milvus 连接
initialize_milvus_connection()
logger.debug(f"已连接到 Milvus Lite路径: {MILVUS_DB_PATH}")
# 检查集合是否存在
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
return False
# 加载集合
try:
collection = Collection(collection_name)
collection.load()
logger.debug(f"加载集合: {collection_name}")
except Exception as e:
logger.error(f"加载集合 {collection_name} 失败: {str(e)}")
raise RuntimeError(f"加载集合失败: {str(e)}")
# 查询匹配的 document_id
expr = f"userid == '{userid}' and filename == '{filename}'"
logger.debug(f"查询表达式: {expr}")
try:
results = collection.query(
expr=expr,
output_fields=["document_id"],
limit=1000
)
if not results:
logger.warning(f"没有找到 userid={userid}, filename={filename} 的记录")
return False
document_ids = list(set(result["document_id"] for result in results if "document_id" in result))
logger.debug(f"找到 {len(document_ids)} 个 document_id: {document_ids}")
except Exception as e:
logger.error(f"查询 document_id 失败: {str(e)}")
raise RuntimeError(f"查询失败: {str(e)}")
# 执行删除
total_deleted = 0
for doc_id in document_ids:
try:
delete_expr = f"userid == '{userid}' and document_id == '{doc_id}'"
logger.debug(f"删除表达式: {delete_expr}")
delete_result = collection.delete(delete_expr)
deleted_count = delete_result.delete_count
total_deleted += deleted_count
logger.info(f"成功删除 document_id={doc_id}{deleted_count} 条记录")
except Exception as e:
logger.error(f"删除 document_id={doc_id} 失败: {str(e)}")
continue
if total_deleted == 0:
logger.warning(f"没有删除任何记录userid={userid}, filename={filename}")
return False
logger.info(f"总计删除 {total_deleted} 条记录userid={userid}, filename={filename}")
return True
except ValueError as ve:
logger.error(f"参数验证失败: {str(ve)}")
return False
except RuntimeError as re:
logger.error(f"数据库操作失败: {str(re)}")
return False
except Exception as e:
logger.error(f"删除文件失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
return False
finally:
try:
connections.disconnect("default")
logger.debug("已断开 Milvus 连接")
except Exception as e:
logger.warning(f"断开 Milvus 连接失败: {str(e)}")
if __name__ == "__main__":
# 测试用例
db_type = "textdb"
userid = "testuser2"
filename = "test.docx"
logger.info(f"测试:删除 userid={userid}, filename={filename} 的文件")
result = delete_document(db_type, userid, filename)
print(f"删除结果: {result}")

View File

@ -1,183 +0,0 @@
import os
import uuid
import yaml
import logging
from datetime import datetime
from typing import List
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from pymilvus import connections
from vector import get_vector_db
from filetxt.loader import fileloader
from extract import extract_and_save_triplets
from kgc import KnowledgeGraph
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
MILVUS_DB_PATH = config['database']['milvus_db_path']
except Exception as e:
logger.error(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
raise RuntimeError(f"无法加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
logger.handlers.clear()
logger.propagate = False
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
def generate_document_id() -> str:
"""为文件生成唯一的 document_id"""
return str(uuid.uuid4())
def load_and_split_data(file_path: str, userid: str, document_id: str) -> List[Document]:
"""
加载文件分片并生成带有元数据的 Document 对象
"""
try:
if not os.path.exists(file_path):
raise ValueError(f"文件 {file_path} 不存在")
if os.path.getsize(file_path) == 0:
raise ValueError(f"文件 {file_path} 为空")
logger.debug(f"检查文件: {file_path}, 大小: {os.path.getsize(file_path)} 字节")
ext = file_path.rsplit('.', 1)[1].lower()
logger.debug(f"文件扩展名: {ext}")
logger.debug("开始加载文件")
text = fileloader(file_path)
if not text or not text.strip():
raise ValueError(f"文件 {file_path} 加载为空")
document = Document(page_content=text)
logger.debug(f"加载完成,生成 1 个文档")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2000,
chunk_overlap=200,
length_function=len,
)
chunks = text_splitter.split_documents([document])
logger.debug(f"分割完成,生成 {len(chunks)} 个文档块")
filename = os.path.basename(file_path)
upload_time = datetime.now().isoformat()
documents = []
for i, chunk in enumerate(chunks):
chunk.metadata.update({
'userid': userid,
'document_id': document_id,
'filename': filename,
'file_path': file_path,
'upload_time': upload_time,
'file_type': ext,
'chunk_index': i,
'source': file_path,
})
required_fields = ['userid', 'document_id', 'filename', 'file_path', 'upload_time', 'file_type']
if not all(field in chunk.metadata and chunk.metadata[field] for field in required_fields):
raise ValueError(f"文档元数据缺少必需字段或值为空: {chunk.metadata}")
documents.append(chunk)
logger.debug(f"生成文档块 {i}: metadata={chunk.metadata}")
logger.debug(f"文件 {file_path} 加载并分割为 {len(documents)} 个文档块document_id: {document_id}")
return documents
except Exception as e:
logger.error(f"加载或分割文件 {file_path} 失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
raise ValueError(f"加载或分割文件失败: {str(e)}")
def embed(file_path: str, userid: str, db_type: str) -> bool:
"""
嵌入文件到 Milvus 向量数据库抽取三元组保存到指定路径并将三元组存储到 Neo4j
"""
try:
if not userid or not db_type:
raise ValueError("userid 和 db_type 不能为空")
if "_" in userid:
raise ValueError("userid 不能包含下划线")
if "_" in db_type:
raise ValueError("db_type 不能包含下划线")
if not os.path.exists(file_path):
raise ValueError(f"文件 {file_path} 不存在")
supported_formats = {'pdf', 'doc', 'docx', 'xlsx', 'xls', 'ppt', 'pptx', 'csv', 'txt'}
ext = file_path.rsplit('.', 1)[1].lower()
if ext not in supported_formats:
logger.error(f"文件 {file_path} 格式不支持,支持的格式: {', '.join(supported_formats)}")
raise ValueError(f"不支持的文件格式: {ext}, 支持的格式: {', '.join(supported_formats)}")
document_id = generate_document_id()
logger.info(f"生成 document_id: {document_id} for file: {file_path}")
logger.info(f"开始处理文件 {file_path}userid: {userid}db_type: {db_type}")
chunks = load_and_split_data(file_path, userid, document_id)
if not chunks:
logger.error(f"文件 {file_path} 未生成任何文档块")
raise ValueError("未生成任何文档块")
logger.debug(f"处理文件 {file_path},生成 {len(chunks)} 个文档块")
logger.debug(f"第一个文档块: {chunks[0].page_content[:200]}")
db = get_vector_db(userid, db_type, documents=chunks)
if not db:
logger.error(f"无法初始化或插入到向量数据库 ragdb_{db_type}")
raise RuntimeError(f"数据库操作失败")
try:
full_text = fileloader(file_path)
if full_text and full_text.strip():
success = extract_and_save_triplets(full_text, document_id, userid)
triplet_file_path = f"/share/wangmeihua/rag/triples/{document_id}_{userid}.txt"
if success and os.path.exists(triplet_file_path):
logger.info(f"文件 {file_path} 三元组保存到: {triplet_file_path}")
try:
kg = KnowledgeGraph(data_path=triplet_file_path, document_id=document_id)
logger.info(f"Step 1: 导入图谱节点到 Neo4jdocument_id: {document_id}")
kg.create_graphnodes()
logger.info(f"Step 2: 导入图谱边到 Neo4jdocument_id: {document_id}")
kg.create_graphrels()
logger.info(f"Step 3: 导出 Neo4j 节点数据document_id: {document_id}")
kg.export_data()
logger.info(f"文件 {file_path} 三元组成功插入 Neo4j")
except Exception as e:
logger.warning(f"将三元组插入 Neo4j 失败: {str(e)},但不影响 Milvus 嵌入")
else:
logger.warning(f"文件 {file_path} 的三元组抽取失败或文件不存在: {triplet_file_path}")
else:
logger.warning(f"文件 {file_path} 内容为空,无法抽取三元组")
except Exception as e:
logger.error(f"文件 {file_path} 三元组抽取失败: {str(e)},但不影响向量化")
logger.info(f"文件 {file_path} 成功嵌入到数据库 ragdb_{db_type}")
return True
except ValueError as ve:
logger.error(f"嵌入文件 {file_path} 失败: {str(ve)}")
return False
except RuntimeError as re:
logger.error(f"嵌入文件 {file_path} 失败: {str(re)}")
return False
except Exception as e:
logger.error(f"嵌入文件 {file_path} 失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
return False
if __name__ == "__main__":
test_file = "/share/wangmeihua/rag/data/test.docx"
userid = "testuser1"
db_type = "textdb"
result = embed(test_file, userid, db_type)
print(f"嵌入结果: {result}")

View File

@ -1,225 +0,0 @@
import os
import torch
import re
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import logging
import yaml
import time
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
except Exception as e:
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
raise RuntimeError(f"无法加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
for handler in (logging.FileHandler(config['logging']['file'], encoding='utf-8'), logging.StreamHandler()):
handler.setFormatter(formatter)
logger.addHandler(handler)
# 三元组保存路径
TRIPLES_OUTPUT_DIR = "/share/wangmeihua/rag/triples"
os.makedirs(TRIPLES_OUTPUT_DIR, exist_ok=True)
# 加载 mREBEL 模型和分词器
local_path = "/share/models/Babelscape/mrebel-large"
try:
tokenizer = AutoTokenizer.from_pretrained(local_path, src_lang="zh_CN", tgt_lang="tp_XX")
model = AutoModelForSeq2SeqLM.from_pretrained(local_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
triplet_id = tokenizer.convert_tokens_to_ids("<triplet>")
logger.debug(f"成功加载 mREBEL 模型,分词器 triplet_id: {triplet_id}")
except Exception as e:
logger.error(f"加载 mREBEL 模型失败: {str(e)}")
raise RuntimeError(f"加载 mREBEL 模型失败: {str(e)}")
# 优化生成参数
gen_kwargs = {
"max_length": 512,
"min_length": 10,
"length_penalty": 0.5,
"num_beams": 3,
"num_return_sequences": 1,
"no_repeat_ngram_size": 2,
"early_stopping": True,
"decoder_start_token_id": triplet_id,
}
def split_document(text: str, max_chunk_size: int = 150) -> list:
"""分割文档为语义完整的块"""
sentences = re.split(r'(?<=[。!?;\n])', text)
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) <= max_chunk_size:
current_chunk += sentence
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk)
return chunks
def extract_triplets_typed(text: str) -> list:
"""解析 mREBEL 生成文本,匹配 <triplet> <entity1> <type1> <entity2> <type2> <relation> 格式"""
triplets = []
logger.debug(f"原始生成文本: {text}")
# 分割标记
tokens = []
in_tag = False
buffer = ""
for char in text:
if char == '<':
in_tag = True
if buffer:
tokens.append(buffer.strip())
buffer = ""
buffer += char
elif char == '>':
in_tag = False
buffer += char
tokens.append(buffer.strip())
buffer = ""
else:
buffer += char
if buffer:
tokens.append(buffer.strip())
# 过滤特殊标记
special_tokens = ["<s>", "<pad>", "</s>", "tp_XX", "__en__", "__zh__", "zh_CN"]
tokens = [t for t in tokens if t not in special_tokens and t]
logger.debug(f"处理后标记: {tokens}")
# 解析三元组
i = 0
while i < len(tokens):
if tokens[i] == "<triplet>" and i + 5 < len(tokens):
entity1 = tokens[i + 1]
type1 = tokens[i + 2][1:-1] if tokens[i + 2].startswith("<") and tokens[i + 2].endswith(">") else ""
entity2 = tokens[i + 3]
type2 = tokens[i + 4][1:-1] if tokens[i + 4].startswith("<") and tokens[i + 4].endswith(">") else ""
relation = tokens[i + 5]
if entity1 and type1 and entity2 and type2 and relation:
triplets.append({
'head': entity1.strip(),
'head_type': type1,
'type': relation.strip(),
'tail': entity2.strip(),
'tail_type': type2
})
logger.debug(f"添加三元组: {entity1}({type1}) - {relation} - {entity2}({type2})")
i += 6
else:
i += 1
return triplets
def extract_and_save_triplets(text: str, document_id: str, userid: str) -> bool:
"""
从文本中抽取三元组并保存到指定路径
参数:
text (str): 输入文本
document_id (str): 文档ID
userid (str): 用户ID
返回:
bool: 三元组抽取和保存是否成功
"""
try:
if not text or not document_id or not userid:
raise ValueError("text、document_id 和 userid 不能为空")
if "_" in document_id or "_" in userid:
raise ValueError("document_id 和 userid 不能包含下划线")
start_time = time.time()
logger.info(f"开始抽取文档 {document_id} 的三元组userid: {userid}")
# 分割文本为语义块
text_chunks = split_document(text, max_chunk_size=150)
logger.debug(f"分割为 {len(text_chunks)} 个文本块")
# 处理所有文本块
all_triplets = []
for i, chunk in enumerate(text_chunks):
logger.debug(f"处理块 {i + 1}/{len(text_chunks)}: {chunk[:50]}...")
# 分词
model_inputs = tokenizer(
chunk,
max_length=256,
padding=True,
truncation=True,
return_tensors="pt"
).to(device)
# 生成
try:
generated_tokens = model.generate(
model_inputs["input_ids"],
attention_mask=model_inputs["attention_mask"],
**gen_kwargs,
)
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False)
for idx, sentence in enumerate(decoded_preds):
logger.debug(f"{i + 1} 生成文本: {sentence}")
triplets = extract_triplets_typed(sentence)
if triplets:
logger.debug(f"{i + 1} 提取到 {len(triplets)} 个三元组")
all_triplets.extend(triplets)
except Exception as e:
logger.warning(f"处理块 {i + 1} 时出错: {str(e)}")
continue
# 去重
unique_triplets = []
seen = set()
for t in all_triplets:
identifier = (t['head'].lower(), t['type'].lower(), t['tail'].lower())
if identifier not in seen:
seen.add(identifier)
unique_triplets.append(t)
# 保存结果
output_file = os.path.join(TRIPLES_OUTPUT_DIR, f"{document_id}_{userid}.txt")
try:
with open(output_file, "w", encoding="utf-8") as f:
for t in unique_triplets:
f.write(f"{t['head']}\t{t['type']}\t{t['tail']}\t{t['head_type']}\t{t['tail_type']}\n")
logger.info(f"文档 {document_id}{len(unique_triplets)} 个三元组已保存到: {output_file}")
except Exception as e:
logger.error(f"保存文档 {document_id} 的三元组失败: {str(e)}")
return False
end_time = time.time()
logger.info(f"文档 {document_id} 三元组抽取完成,耗时: {end_time - start_time:.2f}")
return True
except Exception as e:
logger.error(f"抽取或保存三元组失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
return False
if __name__ == "__main__":
# 测试用例
test_text = "知识图谱是一个结构化的语义知识库。深度学习是基于深层神经网络的机器学习子集。"
document_id = "testdoc123"
userid = "testuser1"
result = extract_and_save_triplets(test_text, document_id, userid)
print(f"抽取结果: {result}")

View File

@ -1,290 +0,0 @@
import os
import logging
import yaml
import numpy as np
from typing import List, Dict, Any
from pymilvus import Collection, utility
from langchain_huggingface import HuggingFaceEmbeddings
from vector import initialize_milvus_connection
from searchquery import extract_entities, match_triplets
from rerank import rerank_results
import torch
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
except Exception as e:
raise RuntimeError(f"无法加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
logger.handlers.clear()
logger.propagate = False
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
try:
with open(config['logging']['file'], 'a', encoding='utf-8') as f:
pass
except Exception as e:
raise RuntimeError(f"日志文件 {config['logging']['file']} 不可写: {str(e)}")
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
# 初始化嵌入模型
embedding = HuggingFaceEmbeddings(
model_name=TEXT_EMBEDDING_MODEL,
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
try:
test_vector = embedding.embed_query("test")
if len(test_vector) != 1024:
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
logger.debug("嵌入模型加载成功")
except Exception as e:
logger.error(f"嵌入模型加载失败: {str(e)}")
raise RuntimeError(f"嵌入模型加载失败: {str(e)}")
def fused_search(
query: str,
userid: str,
db_type: str,
file_paths: List[str],
limit: int = 10,
offset: int = 0,
use_rerank: bool = True
) -> List[Dict[str, Any]]:
"""
融合 RAG 和三元组召回文本块
- 调用 searchquery.py extract_entities match_triplets 获取三元组
- 将所有匹配三元组拼接为融合文本向量化后在 Milvus 中搜索
参数:
query (str): 查询文本
userid (str): 用户 ID
db_type (str): 数据库类型 (e.g., 'textdb')
file_paths (List[str]): 文件路径列表
limit (int): 返回结果数量
offset (int): 偏移量
use_rerank (bool): 是否使用重排序
返回:
List[Dict[str, Any]]: 召回结果包含 textdistancemetadata
"""
try:
logger.info(f"开始融合搜索: query={query}, userid={userid}, db_type={db_type}")
# 参数验证
if not query or not userid or not db_type or not file_paths:
raise ValueError("query、userid、db_type 和 file_paths 不能为空")
if "_" in userid or "_" in db_type:
raise ValueError("userid 和 db_type 不能包含下划线")
# 初始化 Milvus 连接
connections = initialize_milvus_connection()
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
return []
collection = Collection(collection_name)
collection.load()
logger.debug(f"加载 Milvus 集合: {collection_name}")
# 提取实体
query_entities = extract_entities(query)
logger.debug(f"提取实体: {query_entities}")
# 收集所有结果
results = []
search_params = {"metric_type": "COSINE", "params": {"nprobe": 10}}
for file_path in file_paths:
filename = os.path.basename(file_path)
logger.debug(f"处理文件: {filename}")
# 获取 document_id
results_query = collection.query(
expr=f"userid == '{userid}' and filename == '{filename}'",
output_fields=["document_id"],
limit=1
)
if not results_query:
logger.warning(f"未找到 userid {userid} 和 filename {filename} 对应的文档")
continue
document_id = results_query[0]["document_id"]
logger.debug(f"找到 document_id: {document_id}")
# 获取匹配的三元组
matched_triplets = match_triplets(query, query_entities, userid, document_id)
logger.debug(f"匹配三元组: {matched_triplets}")
# 若无三元组,使用原查询向量化
if not matched_triplets:
logger.debug(f"无匹配三元组,使用原查询: {query}")
query_vector = embedding.embed_query(query)
expr = f"userid == '{userid}' and filename == '{filename}'"
milvus_results = collection.search(
data=[query_vector],
anns_field="vector",
param=search_params,
limit=limit,
expr=expr,
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
offset=offset
)
for hits in milvus_results:
for hit in hits:
result = {
"text": hit.entity.get("text"),
"distance": hit.distance,
"source": "fused_query",
"metadata": {
"userid": hit.entity.get("userid"),
"document_id": hit.entity.get("document_id"),
"filename": hit.entity.get("filename"),
"file_path": hit.entity.get("file_path"),
"upload_time": hit.entity.get("upload_time"),
"file_type": hit.entity.get("file_type")
}
}
results.append(result)
logger.debug(f"召回: text={result['text'][:100]}..., distance={result['distance']}")
continue
# 拼接所有三元组
triplet_texts = []
for triplet in matched_triplets:
head = triplet['head']
type = triplet['type']
tail = triplet['tail']
if not head or not type or not tail:
logger.debug(f"无效三元组: {triplet}")
continue
triplet_texts.append(f"{head} {type} {tail}")
if not triplet_texts:
logger.debug(f"无有效三元组,使用原查询: {query}")
query_vector = embedding.embed_query(query)
expr = f"userid == '{userid}' and filename == '{filename}'"
milvus_results = collection.search(
data=[query_vector],
anns_field="vector",
param=search_params,
limit=5,
expr=expr,
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
offset=offset
)
for hits in milvus_results:
for hit in hits:
result = {
"text": hit.entity.get("text"),
"distance": hit.distance,
"source": "fused_query",
"metadata": {
"userid": hit.entity.get("userid"),
"document_id": hit.entity.get("document_id"),
"filename": hit.entity.get("filename"),
"file_path": hit.entity.get("file_path"),
"upload_time": hit.entity.get("upload_time"),
"file_type": hit.entity.get("file_type")
}
}
results.append(result)
logger.debug(f"召回: text={result['text'][:100]}..., distance={result['distance']}")
continue
# 生成融合文本
fused_text = f"{query} {' '.join(triplet_texts)}"
logger.debug(f"融合文本: {fused_text}")
# 向量化
fused_vector = embedding.embed_query(fused_text)
fused_vector = np.array(fused_vector) / np.linalg.norm(fused_vector)
logger.debug(f"生成融合向量,维度: {len(fused_vector)}")
# Milvus 搜索
expr = f"userid == '{userid}' and filename == '{filename}'"
milvus_results = collection.search(
data=[fused_vector],
anns_field="vector",
param=search_params,
limit=5,
expr=expr,
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
offset=offset
)
for hits in milvus_results:
for hit in hits:
result = {
"text": hit.entity.get("text"),
"distance": hit.distance,
"source": f"fused_triplets_{len(triplet_texts)}",
"metadata": {
"userid": hit.entity.get("userid"),
"document_id": hit.entity.get("document_id"),
"filename": hit.entity.get("filename"),
"file_path": hit.entity.get("file_path"),
"upload_time": hit.entity.get("upload_time"),
"file_type": hit.entity.get("file_type")
}
}
results.append(result)
logger.debug(f"召回: text={result['text'][:100]}..., distance={result['distance']}")
# 去重
unique_results = []
seen_texts = set()
for result in results:
text = result['text']
if text not in seen_texts:
seen_texts.add(text)
unique_results.append(result)
logger.debug(f"去重后结果数量: {len(unique_results)}")
# 可选:重排序
if use_rerank and unique_results:
logger.debug("开始重排序")
reranked_results = rerank_results(query, unique_results)
# 按 rerank_score 降序排序
reranked_results = sorted(reranked_results, key=lambda x: x['rerank_score'], reverse=True)
for i, result in enumerate(reranked_results):
logger.debug(f"排序结果 {i+1}: text={result['text'][:100]}..., distance={result['distance']}, rerank_score={result['rerank_score']}")
return reranked_results[:limit]
# 按 distance 降序排序
sorted_results = sorted(unique_results, key=lambda x: x['distance'], reverse=True)
for i, result in enumerate(sorted_results):
logger.debug(f"排序结果 {i+1}: text={result['text'][:100]}..., distance={result['distance']}")
return sorted_results[:limit]
except Exception as e:
logger.error(f"融合搜索失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
return []
if __name__ == "__main__":
query = "知识图谱构建需要什么技术?"
userid = "testuser1"
db_type = "textdb"
file_paths = [
"/share/wangmeihua/rag/data/test.docx",
"/share/wangmeihua/rag/data/zongshu.pdf",
"/share/wangmeihua/rag/data/qianru.pdf"
]
results = fused_search(query, userid, db_type, file_paths, limit=10, offset=0)
for i, result in enumerate(results):
print(f"Result {i+1}:")
print(f"Text: {result['text'][:200]}...")
print(f"Distance: {result['distance']}")
print(f"Source: {result['source']}")
print(f"Metadata: {result['metadata']}\n")

View File

@ -1,81 +0,0 @@
from traceback import format_exc
from appPublic.uniqueID import getID
from appPublic.timeUtils import curDateString
from appPublic.dictObject import DictObject
from sqlor.dbpools import DBPools
from ahserver.serverenv import get_serverenv
from ahserver.filestorage import FileStorage
async def add_kdb(kdb:dict) -> None:
"""
添加知识库
"""
kdb = DictObject(**kdb)
kdb.parentid=None
if kdb.id is None:
kdb.id = getID()
kdb.entity_type = '0'
kdb.create_date = curDateString()
if kdb.orgid is None:
e = Exception(f'Can not add none orgid kdb')
exception(f'{e}\n{format_exc()}')
raise e
f = get_serverenv('get_module_dbname')
dbname = f('rag')
db = DBPools()
async with db.sqlorContext(dbname) as sor:
await C('kdb', kdb.copy())
async def add_dir(kdb:dict) -> None:
"""
添加子目录
"""
kdb = DictObject(**kdb)
if kdb.parentid is None:
e = Exception(f'Can not add root folder')
exception(f'{e}\n{format_exc()}')
raise e
if kdb.id is None:
kdb.id = getID()
kdb.entity_type = '1'
kdb.create_date = curDateString()
f = get_serverenv('get_module_dbname')
dbname = f('rag')
db = DBPools()
async with db.sqlorContext(dbname) as sor:
await C('kdb', kdb.copy())
async def add_doc(doc:dict) -> None:
"""
添加文档
"""
doc = DictObject(**doc)
if doc.parentid is None:
e = Exception(f'Can not add root document')
exception(f'{e}\n{format_exc()}')
raise e
if doc.id is None:
doc.id = getID()
fs = FileStorage()
doc.realpath = fs.realPath(doc.webpath)
doc.create_date = curDateString()
f = get_serverenv('get_module_dbname')
dbname = f('rag')
db = DBPools()
async with db.sqlorContext(dbname) as sor:
await C('doc', doc.copy())
async def get_all_docs(sor, kdbid):
"""
获取所有kdbid下的文档含子目录的
"""
docs = await sor.R('doc', {'parentid':kdbid})
kdbs = await sor.R('kdb', {'parentid':kdbid})
for kdb in kdbs:
docs1 = await get_all_docs(kdb.id)
docs += docs1
return docs

View File

@ -1,194 +0,0 @@
import os
import logging
import re
from py2neo import Graph, Node, Relationship
from typing import Set, List, Dict, Tuple
from ufw.common import share_dir
# 配置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class KnowledgeGraph:
def __init__(self, data_path: str, document_id: str = None):
self.data_path = data_path
self.document_id = document_id or os.path.basename(data_path).split('_')[0]
self.g = Graph("bolt://10.18.34.18:7687", auth=('neo4j', '261229..wmh'))
logger.info(f"开始构建知识图谱data_path: {self.data_path}, document_id: {self.document_id}")
# 验证 data_path 是否有效
if not os.path.exists(self.data_path):
logger.error(f"数据路径 {self.data_path} 不存在")
raise ValueError(f"数据路径 {self.data_path} 不存在")
def _normalize_label(self, entity_type: str) -> str:
"""规范化实体类型为 Neo4j 标签"""
if not entity_type or not entity_type.strip():
return 'Entity'
entity_type = re.sub(r'[^\w\s]', '', entity_type.strip())
words = entity_type.split()
label = '_'.join(word.capitalize() for word in words if word)
return label or 'Entity'
def _clean_relation(self, relation: str) -> Tuple[str, str]:
"""清洗关系,返回 (rel_type, rel_name)"""
relation = relation.strip()
if not relation:
return 'RELATED_TO', '相关'
if relation.startswith('<') and relation.endswith('>'):
cleaned_relation = relation[1:-1]
rel_name = cleaned_relation
rel_type = re.sub(r'[^\w\s]', '', cleaned_relation).replace(' ', '_').upper()
else:
rel_name = relation
rel_type = re.sub(r'[^\w\s]', '', relation).replace(' ', '_').upper()
if 'instance of' in relation.lower():
rel_type = 'INSTANCE_OF'
rel_name = '实例'
elif 'subclass of' in relation.lower():
rel_type = 'SUBCLASS_OF'
rel_name = '子类'
elif 'part of' in relation.lower():
rel_type = 'PART_OF'
rel_name = '部分'
logger.debug(f"处理关系: {relation} -> {rel_type} ({rel_name})")
return rel_type, rel_name
def read_nodes(self) -> Tuple[Dict[str, Set], Dict[str, List], List[Dict]]:
"""读取三元组数据,返回节点和关系"""
nodes_by_label = {}
relations_by_type = {}
triples = []
try:
logger.debug(f"尝试读取文件: {self.data_path}")
with open(self.data_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line or line.startswith('#'):
continue
parts = line.split('\t')
if len(parts) != 5:
logger.warning(f"无效行: {line}")
continue
head, relation, tail, head_type, tail_type = parts
head_label = self._normalize_label(head_type)
tail_label = self._normalize_label(tail_type)
logger.debug(f"实体类型: {head_type} -> {head_label}, {tail_type} -> {tail_label}")
if head_label not in nodes_by_label:
nodes_by_label[head_label] = set()
if tail_label not in nodes_by_label:
nodes_by_label[tail_label] = set()
nodes_by_label[head_label].add(head)
nodes_by_label[tail_label].add(tail)
rel_type, rel_name = self._clean_relation(relation)
if rel_type not in relations_by_type:
relations_by_type[rel_type] = []
relations_by_type[rel_type].append({
'head': head,
'tail': tail,
'head_label': head_label,
'tail_label': tail_label,
'rel_name': rel_name
})
triples.append({
'head': head,
'relation': relation,
'tail': tail,
'head_type': head_type,
'tail_type': tail_type
})
logger.info(f"读取节点: {sum(len(nodes) for nodes in nodes_by_label.values())}")
logger.info(f"读取关系: {sum(len(rels) for rels in relations_by_type.values())}")
return nodes_by_label, relations_by_type, triples
except Exception as e:
logger.error(f"读取数据失败: {str(e)}data_path: {self.data_path}")
raise RuntimeError(f"读取数据失败: {str(e)}")
def create_node(self, label: str, nodes: Set[str]):
"""创建节点,包含 document_id 属性"""
count = 0
for node_name in nodes:
query = f"MATCH (n:{label} {{name: '{node_name}', document_id: '{self.document_id}'}}) RETURN n"
try:
if self.g.run(query).data():
continue
node = Node(label, name=node_name, document_id=self.document_id)
self.g.create(node)
count += 1
logger.debug(f"创建节点: {label} - {node_name} (document_id: {self.document_id})")
except Exception as e:
logger.error(f"创建节点失败: {label} - {node_name}, 错误: {str(e)}")
logger.info(f"创建 {label} 节点: {count}/{len(nodes)}")
return count
def create_relationship(self, rel_type: str, relations: List[Dict]):
"""创建关系"""
count = 0
total = len(relations)
seen_edges = set()
for rel in relations:
head, tail, head_label, tail_label, rel_name = (
rel['head'], rel['tail'], rel['head_label'], rel['tail_label'], rel['rel_name']
)
edge_key = f"{head_label}:{head}###{tail_label}:{tail}###{rel_type}"
if edge_key in seen_edges:
continue
seen_edges.add(edge_key)
query = (
f"MATCH (p:{head_label} {{name: '{head}', document_id: '{self.document_id}'}}), "
f"(q:{tail_label} {{name: '{tail}', document_id: '{self.document_id}'}}) "
f"CREATE (p)-[r:{rel_type} {{name: '{rel_name}'}}]->(q)"
)
try:
self.g.run(query)
count += 1
logger.debug(f"创建关系: {head} -[{rel_type}]-> {tail} (document_id: {self.document_id})")
except Exception as e:
logger.error(f"创建关系失败: {query}, 错误: {str(e)}")
logger.info(f"创建 {rel_type} 关系: {count}/{total}")
return count
def create_graphnodes(self):
"""创建所有节点"""
nodes_by_label, _, _ = self.read_nodes()
total = 0
for label, nodes in nodes_by_label.items():
total += self.create_node(label, nodes)
logger.info(f"总计创建节点: {total}")
return total
def create_graphrels(self):
"""创建所有关系"""
_, relations_by_type, _ = self.read_nodes()
total = 0
for rel_type, relations in relations_by_type.items():
total += self.create_relationship(rel_type, relations)
logger.info(f"总计创建关系: {total}")
return total
def export_data(self):
"""导出节点到文件,包含 document_id"""
nodes_by_label, _, _ = self.read_nodes()
os.makedirs('dict', exist_ok=True)
for label, nodes in nodes_by_label.items():
with open(f'dict/{label.lower()}.txt', 'w', encoding='utf-8') as f:
f.write('\n'.join(f"{name}\t{self.document_id}" for name in sorted(nodes)))
logger.info(f"导出 {label} 节点到 dict/{label.lower()}.txt: {len(nodes)}")
return
if __name__ == '__main__':
data_path = '/share/wangmeihua/rag/triples/26911c68-9107-4bb4-8f31-ff776991a119_testuser2.txt'
handler = KnowledgeGraph(data_path)
logger.info("Step 1: 导入图谱节点中")
handler.create_graphnodes()
logger.info("Step 2: 导入图谱边中")
handler.create_graphrels()
logger.info("Step 3: 导出数据")
handler.export_data()

View File

@ -1,201 +0,0 @@
import os
import yaml
import logging
from typing import List, Dict
from pymilvus import connections, Collection, utility
from langchain_huggingface import HuggingFaceEmbeddings
from vector import initialize_milvus_connection, cleanup_milvus_connection
import torch
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
MILVUS_DB_PATH = config['database']['milvus_db_path']
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
except Exception as e:
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
raise RuntimeError(f"无法加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
logger.handlers.clear() # 清除现有处理器,避免重复
logger.propagate = False # 禁用传播到父级
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
def search_query(query: str, userid: str, db_type: str, file_paths: List[str], limit: int = 5, offset: int = 0) -> List[Dict]:
"""
根据用户输入的查询文本在指定 db_type 的知识库中搜索与 userid 相关的指定文档
参数:
query (str): 用户输入的查询文本
userid (str): 用户ID用于过滤
db_type (str): 数据库类型例如 'textdb'
file_paths (List[str]): 文档路径列表支持1到多个文件
limit (int): 返回的最大结果数默认为 10
offset (int): 偏移量用于分页默认为 0
返回:
List[Dict]: 搜索结果每个元素为包含 textdistance metadata 的字典
异常:
ValueError: 参数无效
RuntimeError: 模型加载或 Milvus 操作失败
"""
try:
# 参数验证
if not query:
raise ValueError("查询文本不能为空")
if not userid or not db_type:
raise ValueError("userid 和 db_type 不能为空")
if "_" in userid or "_" in db_type:
raise ValueError("userid 和 db_type 不能包含下划线")
if len(userid) > 100 or len(db_type) > 100:
raise ValueError("userid 或 db_type 的长度超出限制")
if limit <= 0 or limit > 16384:
raise ValueError("limit 必须在 1 到 16384 之间")
if offset < 0:
raise ValueError("offset 不能为负数")
if limit + offset > 16384:
raise ValueError("limit + offset 不能超过 16384")
if not file_paths:
raise ValueError("file_paths 不能为空")
for file_path in file_paths:
if not isinstance(file_path, str):
raise ValueError(f"file_path 必须是字符串: {file_path}")
if len(os.path.basename(file_path)) > 255:
raise ValueError(f"文件名长度超出 255 个字符: {file_path}")
if "_" in os.path.basename(file_path):
raise ValueError(f"文件名 {file_path} 不能包含下划线")
# 初始化嵌入模型
model_path = TEXT_EMBEDDING_MODEL
if not os.path.exists(model_path):
raise ValueError(f"模型路径 {model_path} 不存在")
embedding = HuggingFaceEmbeddings(
model_name=model_path,
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
try:
test_vector = embedding.embed_query("test")
if len(test_vector) != 1024:
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
logger.debug("嵌入模型加载成功")
except Exception as e:
logger.error(f"嵌入模型加载失败: {str(e)}")
raise RuntimeError(f"嵌入模型加载失败: {str(e)}")
# 将查询转换为向量
query_vector = embedding.embed_query(query)
logger.debug(f"查询向量维度: {len(query_vector)}")
# 连接到 Milvus
initialize_milvus_connection()
# 检查集合是否存在
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
return []
# 加载集合
try:
collection = Collection(collection_name)
collection.load()
logger.debug(f"加载集合: {collection_name}")
except Exception as e:
logger.error(f"加载集合 {collection_name} 失败: {str(e)}")
raise RuntimeError(f"加载集合失败: {str(e)}")
# 构造搜索参数
search_params = {
"metric_type": "COSINE", # 与 vector.py 一致
"params": {"nprobe": 10} # 优化搜索性能
}
# 构造过滤表达式,限制在指定文件
filenames = [os.path.basename(file_path) for file_path in file_paths]
filename_expr = " or ".join([f"filename == '{filename}'" for filename in filenames])
expr = f"userid == '{userid}' and ({filename_expr})"
logger.debug(f"搜索参数: {search_params}, 表达式: {expr}, limit: {limit}, offset: {offset}")
# 执行搜索
try:
results = collection.search(
data=[query_vector],
anns_field="vector",
param=search_params,
limit=limit,
expr=expr,
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
offset=offset
)
except Exception as e:
logger.error(f"搜索失败: {str(e)}")
raise RuntimeError(f"搜索失败: {str(e)}")
# 处理搜索结果
search_results = []
for hits in results:
for hit in hits:
metadata = {
"userid": hit.entity.get("userid"),
"document_id": hit.entity.get("document_id"),
"filename": hit.entity.get("filename"),
"file_path": hit.entity.get("file_path"),
"upload_time": hit.entity.get("upload_time"),
"file_type": hit.entity.get("file_type")
}
result = {
"text": hit.entity.get("text"),
"distance": hit.distance,
"metadata": metadata
}
search_results.append(result)
logger.debug(f"命中: text: {result['text'][:200]}..., 距离: {hit.distance}, 元数据: {metadata}")
logger.debug(f"搜索完成,返回 {len(search_results)} 条结果")
return search_results
except Exception as e:
logger.error(f"搜索失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
raise
finally:
cleanup_milvus_connection()
if __name__ == "__main__":
# 测试代码
query = "知识图谱的知识融合是什么?"
userid = "testuser2"
db_type = "textdb"
file_paths = [
"/share/wangmeihua/rag/data/test.docx",
"/share/wangmeihua/rag/data/test.txt"
]
limit = 5
offset = 0
try:
results = search_query(query, userid, db_type, file_paths, limit, offset)
print(f"搜索结果 ({len(results)} 条):")
for idx, result in enumerate(results, 1):
print(f"结果 {idx}:")
print(f"内容: {result['text'][:200]}...")
print(f"距离: {result['distance']}")
print(f"元数据: {result['metadata']}")
print("-" * 50)
except Exception as e:
print(f"搜索失败: {str(e)}")

View File

@ -1,80 +0,0 @@
import os
import yaml
import logging
from typing import List, Dict
from pymilvus.model.reranker import BGERerankFunction
import torch
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
except Exception as e:
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
raise RuntimeError(f"加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
logger.handlers.clear() # 清除现有处理器
logger.propagate = False # 禁用传播
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
def rerank_results(query: str, results: List[Dict], top_k: int = 10) -> List[Dict]:
"""
使用 BGE Reranker 模型对查询和文本块进行重排序
参数:
query (str): 查询文本
results (List[Dict]): 包含 textdistancesource metadata 的结果列表
top_k (int): 返回的最大结果数默认为 10
返回:
List[Dict]: 重排序后的结果列表包含 textdistancesourcemetadata rerank_score
"""
try:
# 初始化 BGE Reranker
bge_rf = BGERerankFunction(
model_name="/share/models/BAAI/bge-reranker-v2-m3",
device="cuda:0" if torch.cuda.is_available() else "cpu"
)
logger.debug(f"BGE Reranker 初始化成功,模型路径: /share/models/BAAI/bge-reranker-v2-m3, 设备: {'cuda:0' if torch.cuda.is_available() else 'cpu'}")
# 提取文本块
documents = [result['text'] for result in results]
if not documents:
logger.warning("无文本块可重排序")
return results
# 重排序
rerank_results = bge_rf(
query=query,
documents=documents,
top_k=min(top_k, len(documents))
)
# 构建重排序结果
reranked = []
for result in rerank_results:
original_result = results[result.index].copy()
original_result['rerank_score'] = result.score
reranked.append(original_result)
logger.debug(f"重排序结果: text={result.text[:200]}..., rerank_score={result.score:.6f}, source={original_result['source']}")
logger.info(f"重排序返回 {len(reranked)} 条结果")
return reranked
except Exception as e:
logger.error(f"重排序失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
# 回退到原始结果
return results

View File

@ -1,363 +0,0 @@
import os
import yaml
import logging
from typing import List, Dict
from pymilvus import connections, Collection, utility
from langchain_huggingface import HuggingFaceEmbeddings
import numpy as np
from scipy.spatial.distance import cosine
from ltp import LTP
from vector import initialize_milvus_connection, cleanup_milvus_connection
import torch
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
MILVUS_DB_PATH = config['database']['milvus_db_path']
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
except Exception as e:
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
raise RuntimeError(f"加载配置文件失败: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
logger.handlers.clear() # 清理现有处理器,避免重复
logger.propagate = False # 禁用传播到父级
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
# 三元组保存路径
TRIPLES_OUTPUT_DIR = '/share/wangmeihua/rag/triples'
# 初始化嵌入模型
embedding = HuggingFaceEmbeddings(
model_name=TEXT_EMBEDDING_MODEL,
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
try:
test_vector = embedding.embed_query("test")
if len(test_vector) != 1024:
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
logger.debug("嵌入模型加载成功")
except Exception as e:
logger.error(f"嵌入模型加载失败: {str(e)}")
raise RuntimeError(f"嵌入模型加载失败: {str(e)}")
# 初始化 LTP 模型
try:
model_path = "/share/models/LTP/small"
if not os.path.isdir(model_path):
logger.warning(f"本地模型路径 {model_path} 不存在,尝试使用 Hugging Face 模型 'hit-scir/ltp-small'")
model_path = "hit-scir/ltp-small"
ltp = LTP(pretrained_model_name_or_path=model_path)
if torch.cuda.is_available():
ltp.to("cuda")
logger.debug("LTP 模型加载成功")
except Exception as e:
logger.error(f"加载 LTP 模型失败: {str(e)}")
raise RuntimeError(f"加载 LTP 模型失败: {str(e)}")
def extract_entities(query: str) -> List[str]:
"""
从查询文本中抽取实体包括
- LTP NER 识别的实体所有类型
- LTP POS 标注为名词'n'的词
- LTP POS 标注为动词'v'的词
- 连续名词合并 '苹果 公司' -> '苹果公司'移除子词
"""
try:
if not query:
raise ValueError("查询文本不能为空")
# 使用 LTP pipeline 获取分词、词性、NER 结果
result = ltp.pipeline([query], tasks=["cws", "pos", "ner"])
words = result.cws[0]
pos_list = result.pos[0]
ner = result.ner[0]
entities = []
subword_set = set() # 记录连续名词的子词
# 提取 1NER 实体(所有类型)
logger.debug(f"NER 结果: {ner}")
for entity_type, entity, start, end in ner:
entities.append(entity)
# 提取 2合并连续名词
combined = ""
combined_words = [] # 记录当前连续名词的单词
for i in range(len(words)):
if pos_list[i] == 'n':
combined += words[i]
combined_words.append(words[i])
if i + 1 < len(words) and pos_list[i + 1] == 'n':
continue
if combined:
entities.append(combined)
subword_set.update(combined_words)
logger.debug(f"合并连续名词: {combined}, 子词: {combined_words}")
combined = ""
combined_words = []
else:
combined = ""
combined_words = []
logger.debug(f"连续名词子词集合: {subword_set}")
# 提取 3POS 名词('n'),排除子词
for word, pos in zip(words, pos_list):
if pos == 'n' and word not in subword_set:
entities.append(word)
# 提取 4POS 动词('v'
for word, pos in zip(words, pos_list):
if pos == 'v':
entities.append(word)
# 去重
unique_entities = list(dict.fromkeys(entities))
logger.info(f"从查询中提取到 {len(unique_entities)} 个唯一实体: {unique_entities}")
return unique_entities
except Exception as e:
logger.error(f"实体抽取失败: {str(e)}")
return []
def load_triplets_from_file(triplet_file: str) -> List[Dict]:
"""从三元组文件中加载"""
triplets = []
try:
if not os.path.exists(triplet_file):
logger.warning(f"三元组文件 {triplet_file} 不存在")
return []
with open(triplet_file, 'r', encoding='utf-8') as f:
for line in f:
if line.strip():
parts = line.strip().split('\t')
if len(parts) >= 5:
head, relation, tail, head_type, tail_type = parts[:5]
triplets.append({
'head': head,
'head_type': head_type,
'type': relation,
'tail': tail,
'tail_type': tail_type
})
logger.debug(f"{triplet_file} 加载 {len(triplets)} 个三元组")
return triplets
except Exception as e:
logger.error(f"加载三元组文件 {triplet_file} 失败: {str(e)}")
return []
def match_triplets(query: str, query_entities: List[str], userid: str, document_id: str) -> List[Dict]:
"""
匹配查询实体与文档三元组使用语义嵌入
- 初始匹配实体与 head tail 相似度 0.8
- 返回匹配的三元组
"""
matched_triplets = []
ENTITY_SIMILARITY_THRESHOLD = 0.8 # 实体与 head/tail 相似度阈值
try:
# 加载三元组
triplet_file = os.path.join(TRIPLES_OUTPUT_DIR, f"{document_id}_{userid}.txt")
doc_triplets = load_triplets_from_file(triplet_file)
if not doc_triplets:
logger.debug(f"文档 document_id={document_id} 无三元组")
return []
# 缓存查询实体嵌入
entity_vectors = {entity: embedding.embed_query(entity) for entity in query_entities}
# 初始匹配
for entity in query_entities:
entity_vec = entity_vectors[entity]
for d_triplet in doc_triplets:
d_head_vec = embedding.embed_query(d_triplet['head'])
d_tail_vec = embedding.embed_query(d_triplet['tail'])
head_similarity = 1 - cosine(entity_vec, d_head_vec)
tail_similarity = 1 - cosine(entity_vec, d_tail_vec)
if head_similarity >= ENTITY_SIMILARITY_THRESHOLD or tail_similarity >= ENTITY_SIMILARITY_THRESHOLD:
matched_triplets.append(d_triplet)
logger.debug(f"匹配三元组: {d_triplet['head']} - {d_triplet['type']} - {d_triplet['tail']} "
f"(entity={entity}, head_sim={head_similarity:.2f}, tail_sim={tail_similarity:.2f})")
# 去重
unique_matched = []
seen = set()
for t in matched_triplets:
identifier = (t['head'].lower(), t['type'].lower(), t['tail'].lower())
if identifier not in seen:
seen.add(identifier)
unique_matched.append(t)
logger.info(f"找到 {len(unique_matched)} 个匹配的三元组")
return unique_matched
except Exception as e:
logger.error(f"匹配三元组失败: {str(e)}")
return []
def searchquery(query: str, userid: str, db_type: str, file_paths: List[str], limit: int = 5, offset: int = 0) -> List[Dict]:
"""
根据查询抽取实体匹配指定文档的三元组并在 Milvus 中搜索相关文档片段
"""
try:
if not query or not userid or not db_type or not file_paths:
raise ValueError("query、userid、db_type 和 file_paths 不能为空")
if "_" in userid or "_" in db_type:
raise ValueError("userid 和 db_type 不能包含下划线")
if len(userid) > 100 or len(db_type) > 100:
raise ValueError("userid 或 db_type 的长度超出限制")
if limit <= 0 or limit > 16384:
raise ValueError("limit 必须在 1 到 16384 之间")
if offset < 0:
raise ValueError("offset 不能为负数")
if limit + offset > 16384:
raise ValueError("limit + offset 不能超过 16384")
initialize_milvus_connection()
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
return []
collection = Collection(collection_name)
collection.load()
documents = []
for file_path in file_paths:
filename = os.path.basename(file_path)
results = collection.query(
expr=f"userid == '{userid}' and filename == '{filename}'",
output_fields=["document_id", "filename"],
limit=1
)
if not results:
logger.warning(f"未找到 userid {userid} 和 filename {filename} 对应的文档")
continue
documents.append(results[0])
if not documents:
logger.warning("没有找到任何有效文档")
return []
logger.info(f"找到 {len(documents)} 个文档: {[doc['filename'] for doc in documents]}")
query_entities = extract_entities(query)
if not query_entities:
logger.warning("未从查询中提取到实体")
return []
search_results = []
for doc in documents:
document_id = doc["document_id"]
filename = doc["filename"]
logger.debug(f"处理文档: document_id={document_id}, filename={filename}")
matched_triplets = match_triplets(query, query_entities, userid, document_id)
if not matched_triplets:
logger.debug(f"文档 document_id={document_id} 未找到匹配的三元组")
continue
for triplet in matched_triplets:
head = triplet['head']
type = triplet['type']
tail = triplet['tail']
if not head or not type or not tail:
logger.debug(f"无效三元组: head={head}, type={type}, tail={tail}")
continue
triplet_text = f"{head} {type} {tail}"
logger.debug(f"搜索三元组: {triplet_text} (文档: {filename})")
try:
search_params = {"metric_type": "COSINE", "params": {"nprobe": 10}}
query_vector = embedding.embed_query(triplet_text)
expr = f"userid == '{userid}' and filename == '{filename}' and text like '%{head}%{tail}%'"
logger.debug(f"搜索表达式: {expr}")
results = collection.search(
data=[query_vector],
anns_field="vector",
param=search_params,
limit=limit,
expr=expr,
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
offset=offset
)
for hits in results:
for hit in hits:
metadata = {
"userid": hit.entity.get("userid"),
"document_id": hit.entity.get("document_id"),
"filename": hit.entity.get("filename"),
"file_path": hit.entity.get("file_path"),
"upload_time": hit.entity.get("upload_time"),
"file_type": hit.entity.get("file_type")
}
result = {
"text": hit.entity.get("text"),
"distance": hit.distance,
"metadata": metadata
}
search_results.append(result)
logger.debug(f"命中: text: {result['text'][:200]}..., 距离: {hit.distance}, 元数据: {metadata}")
except Exception as e:
logger.warning(f"三元组 {triplet_text} 在文档 {filename} 搜索失败: {str(e)}")
continue
unique_results = []
seen_texts = set()
for result in sorted(search_results, key=lambda x: x['distance'], reverse=True):
if result['text'] not in seen_texts:
unique_results.append(result)
seen_texts.add(result['text'])
if len(unique_results) >= limit:
break
logger.info(f"返回 {len(unique_results)} 条唯一结果")
return unique_results
except Exception as e:
logger.error(f"搜索失败: {str(e)}")
import traceback
logger.debug(traceback.format_exc())
return []
finally:
cleanup_milvus_connection()
if __name__ == "__main__":
query = "什么是知识图谱的知识抽取?"
userid = "testuser1"
db_type = "textdb"
file_paths = [
"/share/wangmeihua/rag/data/test.docx",
"/share/wangmeihua/rag/data/zongshu.pdf",
"/share/wangmeihua/rag/data/qianru.pdf"
]
limit = 5
offset = 0
try:
results = searchquery(query, userid, db_type, file_paths, limit, offset)
print(f"搜索结果 ({len(results)} 条):")
for idx, result in enumerate(results, 1):
print(f"结果 {idx}:")
print(f"内容: {result['text'][:200]}...")
print(f"距离: {result['distance']}")
print(f"元数据: {result['metadata']}")
print("-" * 50)
except Exception as e:
print(f"搜索失败: {str(e)}")

View File

@ -1,9 +0,0 @@
from py2neo import Graph,Node,Relationship,NodeMatcher
username = 'neo4j'
password = '261229..wmh'
auth = (username, password)
graph=Graph("bolt://10.18.34.18:7687", auth = auth)
book_node=Node('经名',name='十三经')
graph.create(book_node)

View File

@ -1,539 +0,0 @@
import os
import uuid
import json
import yaml
from datetime import datetime
from typing import List, Dict, Optional
from pymilvus import connections, utility, Collection, CollectionSchema, FieldSchema, DataType
from langchain_milvus import Milvus
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.documents import Document
import torch
import logging
import time
# 加载配置文件
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
MILVUS_DB_PATH = config['database']['milvus_db_path']
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
except Exception as e:
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
raise RuntimeError(f"无法加载配置文件: {str(e)}")
# 配置日志
logger = logging.getLogger(config['logging']['name'])
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
for handler in (logging.FileHandler(config['logging']['file'], encoding='utf-8'), logging.StreamHandler()):
handler.setFormatter(formatter)
logger.addHandler(handler)
def ensure_milvus_directory() -> None:
"""确保 Milvus 数据库目录存在"""
db_dir = os.path.dirname(MILVUS_DB_PATH)
if not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
logger.debug(f"创建 Milvus 目录: {db_dir}")
if not os.access(db_dir, os.W_OK):
raise RuntimeError(f"Milvus 目录 {db_dir} 不可写")
def initialize_milvus_connection() -> None:
"""初始化 Milvus 连接,确保单一连接"""
try:
if not connections.has_connection("default"):
connections.connect("default", uri=MILVUS_DB_PATH)
logger.debug(f"已连接到 Milvus Lite路径: {MILVUS_DB_PATH}")
else:
logger.debug("已存在 Milvus 连接,跳过重复连接")
except Exception as e:
logger.error(f"连接 Milvus 失败: {str(e)}")
raise RuntimeError(f"连接 Milvus 失败: {str(e)}")
def cleanup_milvus_connection() -> None:
"""清理 Milvus 连接,确保资源释放"""
try:
if connections.has_connection("default"):
connections.disconnect("default")
logger.debug("已断开 Milvus 连接")
time.sleep(3)
except Exception as e:
logger.warning(f"断开 Milvus 连接失败: {str(e)}")
def get_vector_db(userid: str, db_type: str, documents: List[Document]) -> Milvus:
"""
初始化或访问 Milvus Lite 向量数据库集合 db_type 组织利用 userid 区分用户document_id 区分文档并插入文档
"""
try:
# 参数验证
if not userid or not db_type:
raise ValueError("userid 和 db_type 不能为空")
if "_" in userid or "_" in db_type:
raise ValueError("userid 和 db_type 不能包含下划线")
if len(userid) > 100 or len(db_type) > 100:
raise ValueError("userid 和 db_type 的长度应小于 100")
if not documents or not all(isinstance(doc, Document) for doc in documents):
raise ValueError("documents 不能为空且必须是 Document 对象列表")
required_fields = ["userid", "document_id", "filename", "file_path", "upload_time", "file_type"]
for doc in documents:
if not all(field in doc.metadata and doc.metadata[field] for field in required_fields):
raise ValueError(f"文档元数据缺少必需字段或字段值为空: {doc.metadata}")
if doc.metadata["userid"] != userid:
raise ValueError(f"文档元数据的 userid {doc.metadata['userid']} 与输入 userid {userid} 不一致")
ensure_milvus_directory()
initialize_milvus_connection()
# 初始化嵌入模型
model_path = TEXT_EMBEDDING_MODEL
if not os.path.exists(model_path):
raise ValueError(f"模型路径 {model_path} 不存在")
embedding = HuggingFaceEmbeddings(
model_name=model_path,
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
try:
test_vector = embedding.embed_query("test")
if len(test_vector) != 1024:
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
logger.debug(f"嵌入模型加载成功,输出维度: {len(test_vector)}")
except Exception as e:
logger.error(f"嵌入模型加载失败: {str(e)}")
raise RuntimeError(f"加载模型失败: {str(e)}")
# 集合名称
collection_name = f"ragdb_{db_type}"
if len(collection_name) > 255:
raise ValueError(f"集合名称 {collection_name} 超过 255 个字符")
logger.debug(f"集合名称: {collection_name}")
# 定义 schema包含所有固定字段
fields = [
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, max_length=36, auto_id=True),
FieldSchema(name="userid", dtype=DataType.VARCHAR, max_length=100),
FieldSchema(name="document_id", dtype=DataType.VARCHAR, max_length=36),
FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=65535),
FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024),
FieldSchema(name="filename", dtype=DataType.VARCHAR, max_length=255),
FieldSchema(name="file_path", dtype=DataType.VARCHAR, max_length=1024),
FieldSchema(name="upload_time", dtype=DataType.VARCHAR, max_length=64),
FieldSchema(name="file_type", dtype=DataType.VARCHAR, max_length=64),
]
schema = CollectionSchema(
fields=fields,
description=f"{db_type} 数据集合,跨用户使用,包含 document_id 和元数据字段",
auto_id=True,
primary_field="pk",
)
# 检查集合是否存在
if utility.has_collection(collection_name):
try:
collection = Collection(collection_name)
existing_schema = collection.schema
expected_fields = {f.name for f in fields}
actual_fields = {f.name for f in existing_schema.fields}
vector_field = next((f for f in existing_schema.fields if f.name == "vector"), None)
schema_compatible = False
if expected_fields == actual_fields and vector_field is not None and vector_field.dtype == DataType.FLOAT_VECTOR:
dim = vector_field.params.get('dim', None) if hasattr(vector_field, 'params') and vector_field.params else None
schema_compatible = dim == 1024
logger.debug(f"检查集合 {collection_name} 的 schema: 字段匹配={expected_fields == actual_fields}, "
f"vector_field存在={vector_field is not None}, dtype={vector_field.dtype if vector_field else ''}, "
f"dim={dim if dim is not None else '未定义'}")
if not schema_compatible:
logger.warning(f"集合 {collection_name} 的 schema 不兼容,原因: "
f"字段不匹配: {expected_fields.symmetric_difference(actual_fields) or ''}, "
f"vector_field: {vector_field is not None}, "
f"dtype: {vector_field.dtype if vector_field else ''}, "
f"dim: {vector_field.params.get('dim', '未定义') if vector_field and hasattr(vector_field, 'params') and vector_field.params else '未定义'}")
utility.drop_collection(collection_name)
else:
collection.load()
logger.debug(f"集合 {collection_name} 已存在并加载成功")
except Exception as e:
logger.error(f"加载集合 {collection_name} 失败: {str(e)}")
raise RuntimeError(f"加载集合失败: {str(e)}")
# 创建新集合
if not utility.has_collection(collection_name):
try:
collection = Collection(collection_name, schema)
collection.create_index(
field_name="vector",
index_params={"index_type": "AUTOINDEX", "metric_type": "COSINE"}
)
collection.create_index(
field_name="userid",
index_params={"index_type": "INVERTED"}
)
collection.create_index(
field_name="document_id",
index_params={"index_type": "INVERTED"}
)
collection.create_index(
field_name="filename",
index_params={"index_type": "INVERTED"}
)
collection.create_index(
field_name="file_path",
index_params={"index_type": "INVERTED"}
)
collection.create_index(
field_name="upload_time",
index_params={"index_type": "INVERTED"}
)
collection.create_index(
field_name="file_type",
index_params={"index_type": "INVERTED"}
)
collection.load()
logger.debug(f"成功创建并加载集合: {collection_name}")
except Exception as e:
logger.error(f"创建集合 {collection_name} 失败: {str(e)}")
raise RuntimeError(f"创建集合失败: {str(e)}")
# 初始化 Milvus 向量存储
try:
vector_store = Milvus(
embedding_function=embedding,
collection_name=collection_name,
connection_args={"uri": MILVUS_DB_PATH},
drop_old=False,
auto_id=True,
primary_field="pk",
)
logger.debug(f"成功初始化 Milvus 向量存储: {collection_name}")
except Exception as e:
logger.error(f"初始化 Milvus 向量存储失败: {str(e)}")
raise RuntimeError(f"初始化向量存储失败: {str(e)}")
# 插入文档
try:
logger.debug(f"正在为 userid {userid} 插入 {len(documents)} 个文档到 {collection_name}")
for doc in documents:
logger.debug(f"插入文档元数据: {doc.metadata}")
vector_store.add_documents(documents=documents)
logger.debug(f"成功插入 {len(documents)} 个文档")
# 立即查询验证
collection = Collection(collection_name)
collection.load()
results = collection.query(
expr=f"userid == '{userid}'",
output_fields=["pk", "text", "document_id", "filename", "file_path", "upload_time", "file_type"],
limit=10
)
for result in results:
logger.debug(f"插入后查询结果: pk={result['pk']}, document_id={result['document_id']}, "
f"metadata={{'filename': '{result['filename']}', 'file_path': '{result['file_path']}', "
f"'upload_time': '{result['upload_time']}', 'file_type': '{result['file_type']}'}}")
except Exception as e:
logger.error(f"插入文档失败: {str(e)}")
raise RuntimeError(f"插入文档失败: {str(e)}")
return vector_store
except Exception as e:
logger.error(f"初始化 Milvus 向量存储失败: {str(e)}")
raise
finally:
cleanup_milvus_connection()
def get_document_mapping(userid: str, db_type: str) -> Dict[str, Dict]:
"""
获取指定 userid db_type 下的 document_id 与元数据的映射
"""
try:
if not userid or "_" in userid:
raise ValueError("userid 不能为空且不能包含下划线")
if not db_type or "_" in db_type:
raise ValueError("db_type 不能为空且不能包含下划线")
initialize_milvus_connection()
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
return {}
collection = Collection(collection_name)
collection.load()
results = collection.query(
expr=f"userid == '{userid}'",
output_fields=["userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
limit=100
)
mapping = {}
for result in results:
doc_id = result.get("document_id")
if doc_id:
mapping[doc_id] = {
"userid": result.get("userid", ""),
"filename": result.get("filename", ""),
"file_path": result.get("file_path", ""),
"upload_time": result.get("upload_time", ""),
"file_type": result.get("file_type", "")
}
logger.debug(f"document_id: {doc_id}, metadata: {mapping[doc_id]}")
logger.debug(f"找到 {len(mapping)} 个文档的映射")
return mapping
except Exception as e:
logger.error(f"获取文档映射失败: {str(e)}")
raise RuntimeError(f"获取文档映射失败: {str(e)}")
def list_user_collections() -> Dict[str, Dict]:
"""
列出所有数据库类型db_type及其包含的用户userid与对应的文档document_id映射
"""
try:
ensure_milvus_directory()
initialize_milvus_connection()
collections = utility.list_collections()
db_types_with_data = {}
for col in collections:
if col.startswith("ragdb_"):
db_type = col[len("ragdb_"):]
logger.debug(f"处理集合: {col} (db_type: {db_type})")
collection = Collection(col)
collection.load()
batch_size = 1000
offset = 0
user_document_map = {}
while True:
try:
results = collection.query(
expr="",
output_fields=["userid", "document_id"],
limit=batch_size,
offset=offset
)
if not results:
break
for result in results:
userid = result.get("userid")
doc_id = result.get("document_id")
if userid and doc_id:
if userid not in user_document_map:
user_document_map[userid] = set()
user_document_map[userid].add(doc_id)
offset += batch_size
except Exception as e:
logger.error(f"查询集合 {col} 的用户和文档失败: {str(e)}")
break
# 转换为列表以便序列化
user_document_map = {uid: list(doc_ids) for uid, doc_ids in user_document_map.items()}
logger.debug(f"集合 {col} 中找到用户和文档映射: {user_document_map}")
db_types_with_data[db_type] = {
"userids": user_document_map
}
logger.debug(f"可用 db_types 和数据: {db_types_with_data}")
return db_types_with_data
except Exception as e:
logger.error(f"列出集合和用户失败: {str(e)}")
raise
def view_collection_details(userid: str) -> None:
"""
查看特定 userid 在所有集合中的内容和容量包含 document_id 和元数据
"""
try:
if not userid or "_" in userid:
raise ValueError("userid 不能为空且不能包含下划线")
logger.debug(f"正在查看 userid {userid} 的集合")
ensure_milvus_directory()
initialize_milvus_connection()
collections = utility.list_collections()
db_types = [col[len("ragdb_"):] for col in collections if col.startswith("ragdb_")]
if not db_types:
logger.debug(f"未找到任何集合")
return
for db_type in db_types:
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
continue
collection = Collection(collection_name)
collection.load()
try:
all_pks = collection.query(expr=f"userid == '{userid}'", output_fields=["pk"], limit=10000)
num_entities = len(all_pks)
results = collection.query(
expr=f"userid == '{userid}'",
output_fields=["userid","text", "document_id", "filename", "file_path", "upload_time", "file_type"],
limit=10
)
logger.debug(f"集合 {collection_name} 中 userid {userid} 的文档数: {num_entities}")
if num_entities == 0:
logger.debug(f"集合 {collection_name} 中 userid {userid} 无文档")
continue
logger.debug(f"集合 {collection_name} 中 userid {userid} 的内容:")
for idx, doc in enumerate(results, 1):
metadata = {
"userid": doc.get("userid", ""),
"filename": doc.get("filename", ""),
"file_path": doc.get("file_path", ""),
"upload_time": doc.get("upload_time", ""),
"file_type": doc.get("file_type", "")
}
logger.debug(f"文档 {idx}: 内容: {doc.get('text', '')[:200]}..., 元数据: {metadata}")
except Exception as e:
logger.error(f"查询集合 {collection_name} 的文档失败: {str(e)}")
continue
except Exception as e:
logger.error(f"无法查看 userid {userid} 的集合详情: {str(e)}")
raise
def view_vector_data(db_type: str, userid: Optional[str] = None, document_id: Optional[str] = None, limit: int = 100) -> Dict[str, Dict]:
"""
查看指定 db_type 中的向量数据可选按 userid document_id 过滤包含完整元数据和向量
"""
try:
if not db_type or "_" in db_type:
raise ValueError("db_type 不能为空且不能包含下划线")
if limit <= 0 or limit > 16384:
raise ValueError("limit 必须在 1 到 16384 之间")
if userid and "_" in userid:
raise ValueError("userid 不能包含下划线")
if document_id and "_" in document_id:
raise ValueError("document_id 不能包含下划线")
initialize_milvus_connection()
collection_name = f"ragdb_{db_type}"
if not utility.has_collection(collection_name):
logger.warning(f"集合 {collection_name} 不存在")
return {}
collection = Collection(collection_name)
collection.load()
logger.debug(f"加载集合: {collection_name}")
expr = []
if userid:
expr.append(f"userid == '{userid}'")
if document_id:
expr.append(f"document_id == '{document_id}'")
expr = " && ".join(expr) if expr else ""
results = collection.query(
expr=expr,
output_fields=["pk", "text", "document_id", "vector", "filename", "file_path", "upload_time", "file_type"],
limit=limit
)
vector_data = {}
for doc in results:
pk = doc.get("pk", str(uuid.uuid4()))
text = doc.get("text", "")
doc_id = doc.get("document_id", "")
vector = doc.get("vector", [])
metadata = {
"filename": doc.get("filename", ""),
"file_path": doc.get("file_path", ""),
"upload_time": doc.get("upload_time", ""),
"file_type": doc.get("file_type", "")
}
vector_data[pk] = {
"text": text,
"vector": vector,
"document_id": doc_id,
"metadata": metadata
}
logger.debug(f"pk: {pk}, text: {text[:200]}..., document_id: {doc_id}, vector_length: {len(vector)}, metadata: {metadata}")
logger.debug(f"共找到 {len(vector_data)} 条向量数据")
return vector_data
except Exception as e:
logger.error(f"查看向量数据失败: {str(e)}")
raise
def main():
userid = "testuser1"
db_type = "textdb"
# logger.info("\n测试 1带文档初始化")
# documents = [
# Document(
# page_content="深度学习是基于深层神经网络的机器学习子集。",
# metadata={
# "userid": userid,
# "document_id": str(uuid.uuid4()),
# "filename": "test_doc1.txt",
# "file_path": "/path/to/test_doc1.txt",
# "upload_time": datetime.now().isoformat(),
# "file_type": "txt"
# }
# ),
# Document(
# page_content="知识图谱是一个结构化的语义知识库。",
# metadata={
# "userid": userid,
# "document_id": str(uuid.uuid4()),
# "filename": "test_doc2.txt",
# "file_path": "/path/to/test_doc2.txt",
# "upload_time": datetime.now().isoformat(),
# "file_type": "txt"
# }
# ),
# ]
#
# try:
# vector_store = get_vector_db(userid, db_type, documents=documents)
# logger.info(f"集合: ragdb_{db_type}")
# logger.info(f"成功为 userid {userid} 在 {db_type} 中插入文档")
# except Exception as e:
# logger.error(f"失败: {str(e)}")
logger.info("\n测试 2列出所有 db_types 和文档映射")
try:
db_types = list_user_collections()
logger.info(f"可用 db_types 和文档: {db_types}")
except Exception as e:
logger.error(f"失败: {str(e)}")
logger.info(f"\n测试 3查看 userid {userid} 的所有集合")
try:
view_collection_details(userid)
except Exception as e:
logger.error(f"失败: {str(e)}")
# logger.info(f"\n测试 4查看向量数据")
# try:
# vector_data = view_vector_data(db_type, userid=userid)
# logger.info(f"向量数据: {vector_data}")
# except Exception as e:
# logger.error(f"失败: {str(e)}")
logger.info(f"\n测试 5获取 userid {userid}{db_type}数据库的文档映射")
try:
mapping = get_document_mapping(userid, db_type)
logger.info(f"文档映射: {mapping}")
except Exception as e:
logger.error(f"失败: {str(e)}")
if __name__ == "__main__":
main()

View File

@ -1 +0,0 @@
__version__ = '0.0.1'

View File

@ -1,52 +0,0 @@
# -*- coding: utf-8 -*-
from rag.version import __version__
try:
from setuptools import setup
except ImportError:
from distutils.core import setup
required = []
with open('requirements.txt', 'r') as f:
ls = f.read()
required = ls.split('\n')
with open('rag/version.py', 'r') as f:
x = f.read()
y = x[x.index("'")+1:]
z = y[:y.index("'")]
version = z
with open("README.md", "r") as fh:
long_description = fh.read()
name = "rag"
description = "rag"
author = "yumoqing"
email = "yumoqing@gmail.com"
package_data = {}
setup(
name="rag",
version=version,
# uncomment the following lines if you fill them out in release.py
description=description,
author=author,
author_email=email,
platforms='any',
install_requires=required ,
packages=[
"rag"
],
package_data=package_data,
keywords = [
],
url="https://github.com/yumoqing/rag",
long_description=long_description,
long_description_content_type="text/markdown",
classifiers = [
'Operating System :: OS Independent',
'Programming Language :: Python :: 3',
'License :: OSI Approved :: MIT License',
],
)