539 lines
23 KiB
Python
539 lines
23 KiB
Python
import os
|
||
import uuid
|
||
import json
|
||
import yaml
|
||
from datetime import datetime
|
||
from typing import List, Dict, Optional
|
||
from pymilvus import connections, utility, Collection, CollectionSchema, FieldSchema, DataType
|
||
from langchain_milvus import Milvus
|
||
from langchain_huggingface import HuggingFaceEmbeddings
|
||
from langchain_core.documents import Document
|
||
import torch
|
||
import logging
|
||
import time
|
||
|
||
# 加载配置文件
|
||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
||
try:
|
||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
||
config = yaml.safe_load(f)
|
||
MILVUS_DB_PATH = config['database']['milvus_db_path']
|
||
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
|
||
except Exception as e:
|
||
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
||
raise RuntimeError(f"无法加载配置文件: {str(e)}")
|
||
|
||
# 配置日志
|
||
logger = logging.getLogger(config['logging']['name'])
|
||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
||
for handler in (logging.FileHandler(config['logging']['file'], encoding='utf-8'), logging.StreamHandler()):
|
||
handler.setFormatter(formatter)
|
||
logger.addHandler(handler)
|
||
|
||
def ensure_milvus_directory() -> None:
|
||
"""确保 Milvus 数据库目录存在"""
|
||
db_dir = os.path.dirname(MILVUS_DB_PATH)
|
||
if not os.path.exists(db_dir):
|
||
os.makedirs(db_dir, exist_ok=True)
|
||
logger.debug(f"创建 Milvus 目录: {db_dir}")
|
||
if not os.access(db_dir, os.W_OK):
|
||
raise RuntimeError(f"Milvus 目录 {db_dir} 不可写")
|
||
|
||
def initialize_milvus_connection() -> None:
|
||
"""初始化 Milvus 连接,确保单一连接"""
|
||
try:
|
||
if not connections.has_connection("default"):
|
||
connections.connect("default", uri=MILVUS_DB_PATH)
|
||
logger.debug(f"已连接到 Milvus Lite,路径: {MILVUS_DB_PATH}")
|
||
else:
|
||
logger.debug("已存在 Milvus 连接,跳过重复连接")
|
||
except Exception as e:
|
||
logger.error(f"连接 Milvus 失败: {str(e)}")
|
||
raise RuntimeError(f"连接 Milvus 失败: {str(e)}")
|
||
|
||
def cleanup_milvus_connection() -> None:
|
||
"""清理 Milvus 连接,确保资源释放"""
|
||
try:
|
||
if connections.has_connection("default"):
|
||
connections.disconnect("default")
|
||
logger.debug("已断开 Milvus 连接")
|
||
time.sleep(3)
|
||
except Exception as e:
|
||
logger.warning(f"断开 Milvus 连接失败: {str(e)}")
|
||
|
||
def get_vector_db(userid: str, db_type: str, documents: List[Document]) -> Milvus:
|
||
"""
|
||
初始化或访问 Milvus Lite 向量数据库集合,按 db_type 组织,利用 userid 区分用户,document_id 区分文档,并插入文档。
|
||
"""
|
||
try:
|
||
# 参数验证
|
||
if not userid or not db_type:
|
||
raise ValueError("userid 和 db_type 不能为空")
|
||
if "_" in userid or "_" in db_type:
|
||
raise ValueError("userid 和 db_type 不能包含下划线")
|
||
if len(userid) > 100 or len(db_type) > 100:
|
||
raise ValueError("userid 和 db_type 的长度应小于 100")
|
||
if not documents or not all(isinstance(doc, Document) for doc in documents):
|
||
raise ValueError("documents 不能为空且必须是 Document 对象列表")
|
||
required_fields = ["userid", "document_id", "filename", "file_path", "upload_time", "file_type"]
|
||
for doc in documents:
|
||
if not all(field in doc.metadata and doc.metadata[field] for field in required_fields):
|
||
raise ValueError(f"文档元数据缺少必需字段或字段值为空: {doc.metadata}")
|
||
if doc.metadata["userid"] != userid:
|
||
raise ValueError(f"文档元数据的 userid {doc.metadata['userid']} 与输入 userid {userid} 不一致")
|
||
|
||
ensure_milvus_directory()
|
||
initialize_milvus_connection()
|
||
|
||
# 初始化嵌入模型
|
||
model_path = TEXT_EMBEDDING_MODEL
|
||
if not os.path.exists(model_path):
|
||
raise ValueError(f"模型路径 {model_path} 不存在")
|
||
|
||
embedding = HuggingFaceEmbeddings(
|
||
model_name=model_path,
|
||
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
||
encode_kwargs={'normalize_embeddings': True}
|
||
)
|
||
try:
|
||
test_vector = embedding.embed_query("test")
|
||
if len(test_vector) != 1024:
|
||
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
|
||
logger.debug(f"嵌入模型加载成功,输出维度: {len(test_vector)}")
|
||
except Exception as e:
|
||
logger.error(f"嵌入模型加载失败: {str(e)}")
|
||
raise RuntimeError(f"加载模型失败: {str(e)}")
|
||
|
||
# 集合名称
|
||
collection_name = f"ragdb_{db_type}"
|
||
if len(collection_name) > 255:
|
||
raise ValueError(f"集合名称 {collection_name} 超过 255 个字符")
|
||
logger.debug(f"集合名称: {collection_name}")
|
||
|
||
# 定义 schema,包含所有固定字段
|
||
fields = [
|
||
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, max_length=36, auto_id=True),
|
||
FieldSchema(name="userid", dtype=DataType.VARCHAR, max_length=100),
|
||
FieldSchema(name="document_id", dtype=DataType.VARCHAR, max_length=36),
|
||
FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=65535),
|
||
FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024),
|
||
FieldSchema(name="filename", dtype=DataType.VARCHAR, max_length=255),
|
||
FieldSchema(name="file_path", dtype=DataType.VARCHAR, max_length=1024),
|
||
FieldSchema(name="upload_time", dtype=DataType.VARCHAR, max_length=64),
|
||
FieldSchema(name="file_type", dtype=DataType.VARCHAR, max_length=64),
|
||
]
|
||
schema = CollectionSchema(
|
||
fields=fields,
|
||
description=f"{db_type} 数据集合,跨用户使用,包含 document_id 和元数据字段",
|
||
auto_id=True,
|
||
primary_field="pk",
|
||
)
|
||
|
||
# 检查集合是否存在
|
||
if utility.has_collection(collection_name):
|
||
try:
|
||
collection = Collection(collection_name)
|
||
existing_schema = collection.schema
|
||
expected_fields = {f.name for f in fields}
|
||
actual_fields = {f.name for f in existing_schema.fields}
|
||
vector_field = next((f for f in existing_schema.fields if f.name == "vector"), None)
|
||
|
||
schema_compatible = False
|
||
if expected_fields == actual_fields and vector_field is not None and vector_field.dtype == DataType.FLOAT_VECTOR:
|
||
dim = vector_field.params.get('dim', None) if hasattr(vector_field, 'params') and vector_field.params else None
|
||
schema_compatible = dim == 1024
|
||
logger.debug(f"检查集合 {collection_name} 的 schema: 字段匹配={expected_fields == actual_fields}, "
|
||
f"vector_field存在={vector_field is not None}, dtype={vector_field.dtype if vector_field else '无'}, "
|
||
f"dim={dim if dim is not None else '未定义'}")
|
||
if not schema_compatible:
|
||
logger.warning(f"集合 {collection_name} 的 schema 不兼容,原因: "
|
||
f"字段不匹配: {expected_fields.symmetric_difference(actual_fields) or '无'}, "
|
||
f"vector_field: {vector_field is not None}, "
|
||
f"dtype: {vector_field.dtype if vector_field else '无'}, "
|
||
f"dim: {vector_field.params.get('dim', '未定义') if vector_field and hasattr(vector_field, 'params') and vector_field.params else '未定义'}")
|
||
utility.drop_collection(collection_name)
|
||
else:
|
||
collection.load()
|
||
logger.debug(f"集合 {collection_name} 已存在并加载成功")
|
||
except Exception as e:
|
||
logger.error(f"加载集合 {collection_name} 失败: {str(e)}")
|
||
raise RuntimeError(f"加载集合失败: {str(e)}")
|
||
|
||
# 创建新集合
|
||
if not utility.has_collection(collection_name):
|
||
try:
|
||
collection = Collection(collection_name, schema)
|
||
collection.create_index(
|
||
field_name="vector",
|
||
index_params={"index_type": "AUTOINDEX", "metric_type": "COSINE"}
|
||
)
|
||
collection.create_index(
|
||
field_name="userid",
|
||
index_params={"index_type": "INVERTED"}
|
||
)
|
||
collection.create_index(
|
||
field_name="document_id",
|
||
index_params={"index_type": "INVERTED"}
|
||
)
|
||
collection.create_index(
|
||
field_name="filename",
|
||
index_params={"index_type": "INVERTED"}
|
||
)
|
||
collection.create_index(
|
||
field_name="file_path",
|
||
index_params={"index_type": "INVERTED"}
|
||
)
|
||
collection.create_index(
|
||
field_name="upload_time",
|
||
index_params={"index_type": "INVERTED"}
|
||
)
|
||
collection.create_index(
|
||
field_name="file_type",
|
||
index_params={"index_type": "INVERTED"}
|
||
)
|
||
collection.load()
|
||
logger.debug(f"成功创建并加载集合: {collection_name}")
|
||
except Exception as e:
|
||
logger.error(f"创建集合 {collection_name} 失败: {str(e)}")
|
||
raise RuntimeError(f"创建集合失败: {str(e)}")
|
||
|
||
# 初始化 Milvus 向量存储
|
||
try:
|
||
vector_store = Milvus(
|
||
embedding_function=embedding,
|
||
collection_name=collection_name,
|
||
connection_args={"uri": MILVUS_DB_PATH},
|
||
drop_old=False,
|
||
auto_id=True,
|
||
primary_field="pk",
|
||
)
|
||
logger.debug(f"成功初始化 Milvus 向量存储: {collection_name}")
|
||
except Exception as e:
|
||
logger.error(f"初始化 Milvus 向量存储失败: {str(e)}")
|
||
raise RuntimeError(f"初始化向量存储失败: {str(e)}")
|
||
|
||
# 插入文档
|
||
try:
|
||
logger.debug(f"正在为 userid {userid} 插入 {len(documents)} 个文档到 {collection_name}")
|
||
for doc in documents:
|
||
logger.debug(f"插入文档元数据: {doc.metadata}")
|
||
vector_store.add_documents(documents=documents)
|
||
logger.debug(f"成功插入 {len(documents)} 个文档")
|
||
|
||
# 立即查询验证
|
||
collection = Collection(collection_name)
|
||
collection.load()
|
||
results = collection.query(
|
||
expr=f"userid == '{userid}'",
|
||
output_fields=["pk", "text", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
||
limit=10
|
||
)
|
||
for result in results:
|
||
logger.debug(f"插入后查询结果: pk={result['pk']}, document_id={result['document_id']}, "
|
||
f"metadata={{'filename': '{result['filename']}', 'file_path': '{result['file_path']}', "
|
||
f"'upload_time': '{result['upload_time']}', 'file_type': '{result['file_type']}'}}")
|
||
except Exception as e:
|
||
logger.error(f"插入文档失败: {str(e)}")
|
||
raise RuntimeError(f"插入文档失败: {str(e)}")
|
||
|
||
return vector_store
|
||
|
||
except Exception as e:
|
||
logger.error(f"初始化 Milvus 向量存储失败: {str(e)}")
|
||
raise
|
||
finally:
|
||
cleanup_milvus_connection()
|
||
|
||
def get_document_mapping(userid: str, db_type: str) -> Dict[str, Dict]:
|
||
"""
|
||
获取指定 userid 和 db_type 下的 document_id 与元数据的映射。
|
||
"""
|
||
try:
|
||
if not userid or "_" in userid:
|
||
raise ValueError("userid 不能为空且不能包含下划线")
|
||
if not db_type or "_" in db_type:
|
||
raise ValueError("db_type 不能为空且不能包含下划线")
|
||
|
||
initialize_milvus_connection()
|
||
collection_name = f"ragdb_{db_type}"
|
||
if not utility.has_collection(collection_name):
|
||
logger.warning(f"集合 {collection_name} 不存在")
|
||
return {}
|
||
|
||
collection = Collection(collection_name)
|
||
collection.load()
|
||
|
||
results = collection.query(
|
||
expr=f"userid == '{userid}'",
|
||
output_fields=["userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
||
limit=100
|
||
)
|
||
mapping = {}
|
||
for result in results:
|
||
doc_id = result.get("document_id")
|
||
if doc_id:
|
||
mapping[doc_id] = {
|
||
"userid": result.get("userid", ""),
|
||
"filename": result.get("filename", ""),
|
||
"file_path": result.get("file_path", ""),
|
||
"upload_time": result.get("upload_time", ""),
|
||
"file_type": result.get("file_type", "")
|
||
}
|
||
logger.debug(f"document_id: {doc_id}, metadata: {mapping[doc_id]}")
|
||
|
||
logger.debug(f"找到 {len(mapping)} 个文档的映射")
|
||
return mapping
|
||
|
||
except Exception as e:
|
||
logger.error(f"获取文档映射失败: {str(e)}")
|
||
raise RuntimeError(f"获取文档映射失败: {str(e)}")
|
||
|
||
def list_user_collections() -> Dict[str, Dict]:
|
||
"""
|
||
列出所有数据库类型(db_type)及其包含的用户(userid)与对应的文档(document_id)映射。
|
||
"""
|
||
try:
|
||
ensure_milvus_directory()
|
||
initialize_milvus_connection()
|
||
collections = utility.list_collections()
|
||
|
||
db_types_with_data = {}
|
||
for col in collections:
|
||
if col.startswith("ragdb_"):
|
||
db_type = col[len("ragdb_"):]
|
||
logger.debug(f"处理集合: {col} (db_type: {db_type})")
|
||
|
||
collection = Collection(col)
|
||
collection.load()
|
||
|
||
batch_size = 1000
|
||
offset = 0
|
||
user_document_map = {}
|
||
while True:
|
||
try:
|
||
results = collection.query(
|
||
expr="",
|
||
output_fields=["userid", "document_id"],
|
||
limit=batch_size,
|
||
offset=offset
|
||
)
|
||
if not results:
|
||
break
|
||
for result in results:
|
||
userid = result.get("userid")
|
||
doc_id = result.get("document_id")
|
||
if userid and doc_id:
|
||
if userid not in user_document_map:
|
||
user_document_map[userid] = set()
|
||
user_document_map[userid].add(doc_id)
|
||
offset += batch_size
|
||
except Exception as e:
|
||
logger.error(f"查询集合 {col} 的用户和文档失败: {str(e)}")
|
||
break
|
||
|
||
# 转换为列表以便序列化
|
||
user_document_map = {uid: list(doc_ids) for uid, doc_ids in user_document_map.items()}
|
||
logger.debug(f"集合 {col} 中找到用户和文档映射: {user_document_map}")
|
||
|
||
db_types_with_data[db_type] = {
|
||
"userids": user_document_map
|
||
}
|
||
|
||
logger.debug(f"可用 db_types 和数据: {db_types_with_data}")
|
||
return db_types_with_data
|
||
|
||
except Exception as e:
|
||
logger.error(f"列出集合和用户失败: {str(e)}")
|
||
raise
|
||
|
||
def view_collection_details(userid: str) -> None:
|
||
"""
|
||
查看特定 userid 在所有集合中的内容和容量,包含 document_id 和元数据。
|
||
"""
|
||
try:
|
||
if not userid or "_" in userid:
|
||
raise ValueError("userid 不能为空且不能包含下划线")
|
||
|
||
logger.debug(f"正在查看 userid {userid} 的集合")
|
||
ensure_milvus_directory()
|
||
initialize_milvus_connection()
|
||
collections = utility.list_collections()
|
||
db_types = [col[len("ragdb_"):] for col in collections if col.startswith("ragdb_")]
|
||
|
||
if not db_types:
|
||
logger.debug(f"未找到任何集合")
|
||
return
|
||
|
||
for db_type in db_types:
|
||
collection_name = f"ragdb_{db_type}"
|
||
if not utility.has_collection(collection_name):
|
||
logger.warning(f"集合 {collection_name} 不存在")
|
||
continue
|
||
|
||
collection = Collection(collection_name)
|
||
collection.load()
|
||
|
||
try:
|
||
all_pks = collection.query(expr=f"userid == '{userid}'", output_fields=["pk"], limit=10000)
|
||
num_entities = len(all_pks)
|
||
results = collection.query(
|
||
expr=f"userid == '{userid}'",
|
||
output_fields=["userid","text", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
||
limit=10
|
||
)
|
||
logger.debug(f"集合 {collection_name} 中 userid {userid} 的文档数: {num_entities}")
|
||
|
||
if num_entities == 0:
|
||
logger.debug(f"集合 {collection_name} 中 userid {userid} 无文档")
|
||
continue
|
||
|
||
logger.debug(f"集合 {collection_name} 中 userid {userid} 的内容:")
|
||
for idx, doc in enumerate(results, 1):
|
||
metadata = {
|
||
"userid": doc.get("userid", ""),
|
||
"filename": doc.get("filename", ""),
|
||
"file_path": doc.get("file_path", ""),
|
||
"upload_time": doc.get("upload_time", ""),
|
||
"file_type": doc.get("file_type", "")
|
||
}
|
||
logger.debug(f"文档 {idx}: 内容: {doc.get('text', '')[:200]}..., 元数据: {metadata}")
|
||
except Exception as e:
|
||
logger.error(f"查询集合 {collection_name} 的文档失败: {str(e)}")
|
||
continue
|
||
|
||
except Exception as e:
|
||
logger.error(f"无法查看 userid {userid} 的集合详情: {str(e)}")
|
||
raise
|
||
|
||
def view_vector_data(db_type: str, userid: Optional[str] = None, document_id: Optional[str] = None, limit: int = 100) -> Dict[str, Dict]:
|
||
"""
|
||
查看指定 db_type 中的向量数据,可选按 userid 和 document_id 过滤,包含完整元数据和向量。
|
||
"""
|
||
try:
|
||
if not db_type or "_" in db_type:
|
||
raise ValueError("db_type 不能为空且不能包含下划线")
|
||
if limit <= 0 or limit > 16384:
|
||
raise ValueError("limit 必须在 1 到 16384 之间")
|
||
if userid and "_" in userid:
|
||
raise ValueError("userid 不能包含下划线")
|
||
if document_id and "_" in document_id:
|
||
raise ValueError("document_id 不能包含下划线")
|
||
|
||
initialize_milvus_connection()
|
||
collection_name = f"ragdb_{db_type}"
|
||
if not utility.has_collection(collection_name):
|
||
logger.warning(f"集合 {collection_name} 不存在")
|
||
return {}
|
||
|
||
collection = Collection(collection_name)
|
||
collection.load()
|
||
logger.debug(f"加载集合: {collection_name}")
|
||
|
||
expr = []
|
||
if userid:
|
||
expr.append(f"userid == '{userid}'")
|
||
if document_id:
|
||
expr.append(f"document_id == '{document_id}'")
|
||
expr = " && ".join(expr) if expr else ""
|
||
|
||
results = collection.query(
|
||
expr=expr,
|
||
output_fields=["pk", "text", "document_id", "vector", "filename", "file_path", "upload_time", "file_type"],
|
||
limit=limit
|
||
)
|
||
|
||
vector_data = {}
|
||
for doc in results:
|
||
pk = doc.get("pk", str(uuid.uuid4()))
|
||
text = doc.get("text", "")
|
||
doc_id = doc.get("document_id", "")
|
||
vector = doc.get("vector", [])
|
||
metadata = {
|
||
"filename": doc.get("filename", ""),
|
||
"file_path": doc.get("file_path", ""),
|
||
"upload_time": doc.get("upload_time", ""),
|
||
"file_type": doc.get("file_type", "")
|
||
}
|
||
vector_data[pk] = {
|
||
"text": text,
|
||
"vector": vector,
|
||
"document_id": doc_id,
|
||
"metadata": metadata
|
||
}
|
||
logger.debug(f"pk: {pk}, text: {text[:200]}..., document_id: {doc_id}, vector_length: {len(vector)}, metadata: {metadata}")
|
||
|
||
logger.debug(f"共找到 {len(vector_data)} 条向量数据")
|
||
return vector_data
|
||
|
||
except Exception as e:
|
||
logger.error(f"查看向量数据失败: {str(e)}")
|
||
raise
|
||
|
||
def main():
|
||
userid = "testuser1"
|
||
db_type = "textdb"
|
||
|
||
# logger.info("\n测试 1:带文档初始化")
|
||
# documents = [
|
||
# Document(
|
||
# page_content="深度学习是基于深层神经网络的机器学习子集。",
|
||
# metadata={
|
||
# "userid": userid,
|
||
# "document_id": str(uuid.uuid4()),
|
||
# "filename": "test_doc1.txt",
|
||
# "file_path": "/path/to/test_doc1.txt",
|
||
# "upload_time": datetime.now().isoformat(),
|
||
# "file_type": "txt"
|
||
# }
|
||
# ),
|
||
# Document(
|
||
# page_content="知识图谱是一个结构化的语义知识库。",
|
||
# metadata={
|
||
# "userid": userid,
|
||
# "document_id": str(uuid.uuid4()),
|
||
# "filename": "test_doc2.txt",
|
||
# "file_path": "/path/to/test_doc2.txt",
|
||
# "upload_time": datetime.now().isoformat(),
|
||
# "file_type": "txt"
|
||
# }
|
||
# ),
|
||
# ]
|
||
#
|
||
# try:
|
||
# vector_store = get_vector_db(userid, db_type, documents=documents)
|
||
# logger.info(f"集合: ragdb_{db_type}")
|
||
# logger.info(f"成功为 userid {userid} 在 {db_type} 中插入文档")
|
||
# except Exception as e:
|
||
# logger.error(f"失败: {str(e)}")
|
||
|
||
logger.info("\n测试 2:列出所有 db_types 和文档映射")
|
||
try:
|
||
db_types = list_user_collections()
|
||
logger.info(f"可用 db_types 和文档: {db_types}")
|
||
except Exception as e:
|
||
logger.error(f"失败: {str(e)}")
|
||
|
||
logger.info(f"\n测试 3:查看 userid {userid} 的所有集合")
|
||
try:
|
||
view_collection_details(userid)
|
||
except Exception as e:
|
||
logger.error(f"失败: {str(e)}")
|
||
|
||
# logger.info(f"\n测试 4:查看向量数据")
|
||
# try:
|
||
# vector_data = view_vector_data(db_type, userid=userid)
|
||
# logger.info(f"向量数据: {vector_data}")
|
||
# except Exception as e:
|
||
# logger.error(f"失败: {str(e)}")
|
||
|
||
logger.info(f"\n测试 5:获取 userid {userid} 在{db_type}数据库的文档映射")
|
||
try:
|
||
mapping = get_document_mapping(userid, db_type)
|
||
logger.info(f"文档映射: {mapping}")
|
||
except Exception as e:
|
||
logger.error(f"失败: {str(e)}")
|
||
|
||
if __name__ == "__main__":
|
||
main() |