删除相关文件
This commit is contained in:
parent
08fac45422
commit
22ad6e48fd
@ -1,290 +0,0 @@
|
|||||||
import os
|
|
||||||
import logging
|
|
||||||
import yaml
|
|
||||||
import numpy as np
|
|
||||||
from typing import List, Dict, Any
|
|
||||||
from pymilvus import Collection, utility
|
|
||||||
from langchain_huggingface import HuggingFaceEmbeddings
|
|
||||||
from vector import initialize_milvus_connection
|
|
||||||
from searchquery import extract_entities, match_triplets
|
|
||||||
from rerank import rerank_results
|
|
||||||
import torch
|
|
||||||
import time
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
|
|
||||||
except Exception as e:
|
|
||||||
raise RuntimeError(f"无法加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
logger.handlers.clear()
|
|
||||||
logger.propagate = False
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
try:
|
|
||||||
with open(config['logging']['file'], 'a', encoding='utf-8') as f:
|
|
||||||
pass
|
|
||||||
except Exception as e:
|
|
||||||
raise RuntimeError(f"日志文件 {config['logging']['file']} 不可写: {str(e)}")
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
|
|
||||||
file_handler.setFormatter(formatter)
|
|
||||||
stream_handler = logging.StreamHandler()
|
|
||||||
stream_handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(file_handler)
|
|
||||||
logger.addHandler(stream_handler)
|
|
||||||
|
|
||||||
# 初始化嵌入模型
|
|
||||||
embedding = HuggingFaceEmbeddings(
|
|
||||||
model_name=TEXT_EMBEDDING_MODEL,
|
|
||||||
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
|
||||||
encode_kwargs={'normalize_embeddings': True}
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
test_vector = embedding.embed_query("test")
|
|
||||||
if len(test_vector) != 1024:
|
|
||||||
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
|
|
||||||
logger.debug("嵌入模型加载成功")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
|
|
||||||
# 缓存三元组
|
|
||||||
TRIPLET_CACHE = {}
|
|
||||||
|
|
||||||
|
|
||||||
def load_triplets_to_cache(userid: str, document_id: str) -> List[Dict]:
|
|
||||||
"""加载三元组到缓存"""
|
|
||||||
cache_key = f"{document_id}_{userid}"
|
|
||||||
if cache_key in TRIPLET_CACHE:
|
|
||||||
logger.debug(f"从缓存加载三元组: {cache_key}")
|
|
||||||
return TRIPLET_CACHE[cache_key]
|
|
||||||
|
|
||||||
triplet_file = f"/share/wangmeihua/rag/triples/{document_id}_{userid}.txt"
|
|
||||||
triplets = []
|
|
||||||
try:
|
|
||||||
with open(triplet_file, 'r', encoding='utf-8') as f:
|
|
||||||
for line in f:
|
|
||||||
parts = line.strip().split('\t')
|
|
||||||
if len(parts) < 3:
|
|
||||||
continue
|
|
||||||
head, type_, tail = parts[:3]
|
|
||||||
triplets.append({'head': head, 'type': type_, 'tail': tail})
|
|
||||||
TRIPLET_CACHE[cache_key] = triplets
|
|
||||||
logger.debug(f"加载三元组文件: {triplet_file}, 数量: {len(triplets)}")
|
|
||||||
return triplets
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载三元组失败: {triplet_file}, 错误: {str(e)}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
|
|
||||||
def fused_search(
|
|
||||||
query: str,
|
|
||||||
userid: str,
|
|
||||||
db_type: str,
|
|
||||||
file_paths: List[str],
|
|
||||||
limit: int = 5,
|
|
||||||
offset: int = 0,
|
|
||||||
use_rerank: bool = True
|
|
||||||
) -> List[Dict[str, Any]]:
|
|
||||||
"""
|
|
||||||
融合 RAG 和三元组召回文本块:
|
|
||||||
- 收集所有输入文件的三元组,拼接为融合文本,向量化后在所有文件中搜索。
|
|
||||||
- 结果去重并按 rerank_score 或 distance 排序,重排序使用融合文本。
|
|
||||||
|
|
||||||
参数:
|
|
||||||
query (str): 查询文本
|
|
||||||
userid (str): 用户 ID
|
|
||||||
db_type (str): 数据库类型 (e.g., 'textdb')
|
|
||||||
file_paths (List[str]): 文件路径列表
|
|
||||||
limit (int): 返回结果数量
|
|
||||||
offset (int): 偏移量
|
|
||||||
use_rerank (bool): 是否使用重排序
|
|
||||||
|
|
||||||
返回:
|
|
||||||
List[Dict[str, Any]]: 召回结果,包含 text、distance、source、metadata、rerank_score
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
logger.info(f"开始融合搜索: query={query}, userid={userid}, db_type={db_type}")
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
# 参数验证
|
|
||||||
if not query or not userid or not db_type or not file_paths:
|
|
||||||
raise ValueError("query、userid、db_type 和 file_paths 不能为空")
|
|
||||||
if "_" in userid or "_" in db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能包含下划线")
|
|
||||||
|
|
||||||
# 初始化 Milvus 连接
|
|
||||||
connections = initialize_milvus_connection()
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
return []
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
logger.debug(f"加载 Milvus 集合: {collection_name}")
|
|
||||||
|
|
||||||
# 提取实体
|
|
||||||
entity_start = time.time()
|
|
||||||
query_entities = extract_entities(query)
|
|
||||||
logger.debug(f"提取实体: {query_entities}, 耗时: {time.time() - entity_start:.3f}s")
|
|
||||||
|
|
||||||
# 收集所有文件的 document_id 和三元组
|
|
||||||
doc_id_map = {}
|
|
||||||
filenames = []
|
|
||||||
all_triplets = []
|
|
||||||
for file_path in file_paths:
|
|
||||||
filename = os.path.basename(file_path)
|
|
||||||
filenames.append(filename)
|
|
||||||
logger.debug(f"处理文件: {filename}")
|
|
||||||
|
|
||||||
# 获取 document_id
|
|
||||||
results_query = collection.query(
|
|
||||||
expr=f"userid == '{userid}' and filename == '{filename}'",
|
|
||||||
output_fields=["document_id"],
|
|
||||||
limit=1
|
|
||||||
)
|
|
||||||
if not results_query:
|
|
||||||
logger.warning(f"未找到 userid {userid} 和 filename {filename} 对应的文档")
|
|
||||||
continue
|
|
||||||
document_id = results_query[0]["document_id"]
|
|
||||||
doc_id_map[filename] = document_id
|
|
||||||
load_triplets_to_cache(userid, document_id)
|
|
||||||
|
|
||||||
# 获取匹配的三元组
|
|
||||||
triplet_start = time.time()
|
|
||||||
matched_triplets = match_triplets(query, query_entities, userid, document_id)
|
|
||||||
logger.debug(
|
|
||||||
f"文件 {filename} 匹配三元组: {len(matched_triplets)} 条, 耗时: {time.time() - triplet_start:.3f}s")
|
|
||||||
all_triplets.extend(matched_triplets)
|
|
||||||
|
|
||||||
if not doc_id_map:
|
|
||||||
logger.warning("未找到任何有效文档")
|
|
||||||
return []
|
|
||||||
|
|
||||||
# 拼接融合文本
|
|
||||||
triplet_texts = []
|
|
||||||
for triplet in all_triplets:
|
|
||||||
head = triplet['head']
|
|
||||||
type_ = triplet['type']
|
|
||||||
tail = triplet['tail']
|
|
||||||
if not head or not type_ or not tail:
|
|
||||||
logger.debug(f"无效三元组: {triplet}")
|
|
||||||
continue
|
|
||||||
triplet_texts.append(f"{head} {type_} {tail}")
|
|
||||||
|
|
||||||
# 定义融合文本
|
|
||||||
fused_text = query if not triplet_texts else f"{query} {' '.join(triplet_texts)}"
|
|
||||||
logger.debug(f"融合文本: {fused_text}, 三元组数量: {len(triplet_texts)}")
|
|
||||||
|
|
||||||
# 向量化
|
|
||||||
embed_start = time.time()
|
|
||||||
query_vector = embedding.embed_query(fused_text)
|
|
||||||
query_vector = np.array(query_vector) / np.linalg.norm(query_vector)
|
|
||||||
logger.debug(f"生成融合向量,维度: {len(query_vector)}, 耗时: {time.time() - embed_start:.3f}s")
|
|
||||||
|
|
||||||
# Milvus 搜索
|
|
||||||
expr = f"userid == '{userid}' and filename in {filenames}"
|
|
||||||
search_params = {"metric_type": "COSINE", "params": {"nprobe": 10}}
|
|
||||||
milvus_start = time.time()
|
|
||||||
milvus_results = collection.search(
|
|
||||||
data=[query_vector],
|
|
||||||
anns_field="vector",
|
|
||||||
param=search_params,
|
|
||||||
limit=100,
|
|
||||||
expr=expr,
|
|
||||||
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
offset=offset
|
|
||||||
)
|
|
||||||
logger.debug(f"Milvus 搜索耗时: {time.time() - milvus_start:.3f}s")
|
|
||||||
|
|
||||||
results = []
|
|
||||||
for hits in milvus_results:
|
|
||||||
for hit in hits:
|
|
||||||
result = {
|
|
||||||
"text": hit.entity.get("text"),
|
|
||||||
"distance": hit.distance,
|
|
||||||
"source": "fused_query" if not triplet_texts else f"fused_triplets_{len(triplet_texts)}",
|
|
||||||
"metadata": {
|
|
||||||
"userid": hit.entity.get("userid"),
|
|
||||||
"document_id": hit.entity.get("document_id"),
|
|
||||||
"filename": hit.entity.get("filename"),
|
|
||||||
"file_path": hit.entity.get("file_path"),
|
|
||||||
"upload_time": hit.entity.get("upload_time"),
|
|
||||||
"file_type": hit.entity.get("file_type")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
results.append(result)
|
|
||||||
logger.debug(
|
|
||||||
f"召回: text={result['text'][:100]}..., distance={result['distance']}, filename={result['metadata']['filename']}")
|
|
||||||
|
|
||||||
# 去重
|
|
||||||
unique_results = []
|
|
||||||
seen_texts = set()
|
|
||||||
for result in results:
|
|
||||||
text = result['text']
|
|
||||||
if not text:
|
|
||||||
logger.warning(f"发现空文本结果: {result['metadata']}")
|
|
||||||
continue
|
|
||||||
if text in seen_texts:
|
|
||||||
logger.debug(f"移除重复文本: text={text[:100]}..., filename={result['metadata']['filename']}")
|
|
||||||
continue
|
|
||||||
seen_texts.add(text)
|
|
||||||
unique_results.append(result)
|
|
||||||
logger.info(f"去重后结果数量: {len(unique_results)} (原始数量: {len(results)})")
|
|
||||||
|
|
||||||
# 可选:重排序
|
|
||||||
if use_rerank and unique_results:
|
|
||||||
logger.debug("开始重排序")
|
|
||||||
logger.debug(f"重排序查询: {fused_text}")
|
|
||||||
rerank_start = time.time()
|
|
||||||
reranked_results = rerank_results(fused_text, unique_results)
|
|
||||||
reranked_results = sorted(reranked_results, key=lambda x: x.get('rerank_score', 0), reverse=True)
|
|
||||||
logger.debug(f"重排序分数分布: {[round(r.get('rerank_score', 0), 3) for r in reranked_results]}")
|
|
||||||
logger.debug(f"重排序耗时: {time.time() - rerank_start:.3f}s")
|
|
||||||
for i, result in enumerate(reranked_results):
|
|
||||||
logger.debug(
|
|
||||||
f"排序结果 {i + 1}: text={result['text'][:100]}..., distance={result['distance']}, rerank_score={result.get('rerank_score', 'N/A')}")
|
|
||||||
logger.info(f"总耗时: {time.time() - start_time:.3f}s")
|
|
||||||
return reranked_results[:limit]
|
|
||||||
|
|
||||||
# 按 distance 降序排序
|
|
||||||
sorted_results = sorted(unique_results, key=lambda x: x['distance'], reverse=True)
|
|
||||||
for i, result in enumerate(sorted_results):
|
|
||||||
logger.debug(f"排序结果 {i + 1}: text={result['text'][:100]}..., distance={result['distance']}")
|
|
||||||
logger.info(f"总耗时: {time.time() - start_time:.3f}s")
|
|
||||||
return sorted_results[:limit]
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"融合搜索失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.error(traceback.format_exc())
|
|
||||||
return []
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
query = "什么是知识抽取?"
|
|
||||||
userid = "testuser1"
|
|
||||||
db_type = "textdb"
|
|
||||||
file_paths = [
|
|
||||||
"/share/wangmeihua/rag/data/test.docx",
|
|
||||||
"/share/wangmeihua/rag/data/zongshu.pdf",
|
|
||||||
"/share/wangmeihua/rag/data/qianru.pdf",
|
|
||||||
]
|
|
||||||
try:
|
|
||||||
results = fused_search(query, userid, db_type, file_paths, limit=10, offset=0)
|
|
||||||
for i, result in enumerate(results):
|
|
||||||
print(f"Result {i + 1}:")
|
|
||||||
print(f"Text: {result['text'][:200]}...")
|
|
||||||
print(f"Distance: {result['distance']:.3f}")
|
|
||||||
print(
|
|
||||||
f"Rerank Score: {result.get('rerank_score', 'N/A') if isinstance(result.get('rerank_score'), (int, float)) else 'N/A':.3f}")
|
|
||||||
print(f"Source: {result['source']}")
|
|
||||||
print(f"Metadata: {result['metadata']}\n")
|
|
||||||
except Exception as e:
|
|
||||||
print(f"搜索失败: {str(e)}")
|
|
||||||
@ -1,190 +0,0 @@
|
|||||||
import os
|
|
||||||
import yaml
|
|
||||||
import logging
|
|
||||||
from typing import List, Dict
|
|
||||||
from pymilvus import connections, Collection, utility
|
|
||||||
from langchain_huggingface import HuggingFaceEmbeddings
|
|
||||||
from query import search_query
|
|
||||||
from searchquery import searchquery
|
|
||||||
from rerank import rerank_results
|
|
||||||
from vector import initialize_milvus_connection, cleanup_milvus_connection
|
|
||||||
import torch
|
|
||||||
from functools import lru_cache
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
MILVUS_DB_PATH = config['database']['milvus_db_path']
|
|
||||||
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
|
|
||||||
except Exception as e:
|
|
||||||
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
logger.handlers.clear() # 清除现有处理器
|
|
||||||
logger.propagate = False # 禁用传播
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
|
|
||||||
file_handler.setFormatter(formatter)
|
|
||||||
stream_handler = logging.StreamHandler()
|
|
||||||
stream_handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(file_handler)
|
|
||||||
logger.addHandler(stream_handler)
|
|
||||||
|
|
||||||
# 初始化嵌入模型(缓存)
|
|
||||||
@lru_cache(maxsize=1000)
|
|
||||||
def get_embedding(text: str) -> List[float]:
|
|
||||||
embedding = HuggingFaceEmbeddings(
|
|
||||||
model_name=TEXT_EMBEDDING_MODEL,
|
|
||||||
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
|
||||||
encode_kwargs={'normalize_embeddings': True}
|
|
||||||
)
|
|
||||||
vector = embedding.embed_query(text)
|
|
||||||
if len(vector) != 1024:
|
|
||||||
raise ValueError(f"嵌入模型输出维度 {len(vector)} 不匹配预期 1024")
|
|
||||||
return vector
|
|
||||||
|
|
||||||
def combined_search(query: str, userid: str, db_type: str, file_paths: List[str], limit: int = 10, offset: int = 0) -> List[Dict]:
|
|
||||||
"""
|
|
||||||
结合 RAG 和三元组检索,召回相关文本块,使用 BGE Reranker 重排序。
|
|
||||||
|
|
||||||
参数:
|
|
||||||
query (str): 查询文本
|
|
||||||
userid (str): 用户ID
|
|
||||||
db_type (str): 数据库类型
|
|
||||||
file_paths (List[str]): 文档路径列表
|
|
||||||
limit (int): 返回的最大结果数,默认为 10
|
|
||||||
offset (int): 偏移量,默认为 0
|
|
||||||
|
|
||||||
返回:
|
|
||||||
List[Dict]: 包含 text、distance、source、metadata 和 rerank_score 的结果列表
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# 参数验证
|
|
||||||
if not query or not userid or not db_type or not file_paths:
|
|
||||||
raise ValueError("query、userid、db_type 和 file_paths 不能为空")
|
|
||||||
if "_" in userid or "_" in db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能包含下划线")
|
|
||||||
if len(userid) > 100 or len(db_type) > 100:
|
|
||||||
raise ValueError("userid 或 db_type 的长度超出限制")
|
|
||||||
if limit <= 0 or limit > 16384:
|
|
||||||
raise ValueError("limit 必须在 1 到 16384 之间")
|
|
||||||
if offset < 0:
|
|
||||||
raise ValueError("offset 不能为负数")
|
|
||||||
if limit + offset > 16384:
|
|
||||||
raise ValueError("limit + offset 不能超过 16384")
|
|
||||||
|
|
||||||
for file_path in file_paths:
|
|
||||||
if not isinstance(file_path, str):
|
|
||||||
raise ValueError(f"file_path 必须是字符串: {file_path}")
|
|
||||||
if len(os.path.basename(file_path)) > 255:
|
|
||||||
raise ValueError(f"文件名长度超出 255 个字符: {file_path}")
|
|
||||||
|
|
||||||
# 初始化 Milvus 连接
|
|
||||||
initialize_milvus_connection()
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
return []
|
|
||||||
|
|
||||||
# RAG 检索,使用默认 limit=3
|
|
||||||
rag_results = search_query(query, userid, db_type, file_paths, offset=offset)
|
|
||||||
for result in rag_results:
|
|
||||||
result['source'] = 'rag'
|
|
||||||
logger.info(f"RAG 检索返回 {len(rag_results)} 条结果")
|
|
||||||
|
|
||||||
# 三元组检索,使用默认 limit=3
|
|
||||||
triplet_results = searchquery(query, userid, db_type, file_paths, offset=offset)
|
|
||||||
for result in triplet_results:
|
|
||||||
result['source'] = 'triplet'
|
|
||||||
logger.info(f"三元组检索返回 {len(triplet_results)} 条结果")
|
|
||||||
|
|
||||||
# 记录三元组检索结果详情
|
|
||||||
for idx, result in enumerate(triplet_results, 1):
|
|
||||||
logger.debug(f"三元组结果 {idx}: text={result['text'][:200]}..., distance={result['distance']:.4f}, metadata={result['metadata']}")
|
|
||||||
|
|
||||||
# 合并结果
|
|
||||||
all_results = rag_results + triplet_results
|
|
||||||
if not all_results:
|
|
||||||
logger.warning("RAG 和三元组检索均无结果")
|
|
||||||
return []
|
|
||||||
|
|
||||||
# 记录合并前的结果
|
|
||||||
logger.debug("合并前结果:")
|
|
||||||
for idx, result in enumerate(all_results, 1):
|
|
||||||
logger.debug(f"结果 {idx} ({result['source']}): text={result['text'][:200]}..., distance={result['distance']:.4f}, metadata={result['metadata']}")
|
|
||||||
|
|
||||||
# 使用 BGE Reranker 重排序
|
|
||||||
reranked_results = rerank_results(query, all_results, top_k=len(all_results))
|
|
||||||
|
|
||||||
# 按 rerank_score 排序(不去重)
|
|
||||||
sorted_results = sorted(reranked_results, key=lambda x: x['rerank_score'], reverse=True)
|
|
||||||
|
|
||||||
# 记录排序后的结果
|
|
||||||
logger.debug("重排序后结果:")
|
|
||||||
for idx, result in enumerate(sorted_results, 1):
|
|
||||||
logger.debug(f"排序结果 {idx} ({result['source']}): text={result['text'][:200]}..., distance={result['distance']:.4f}, rerank_score={result['rerank_score']:.6f}, metadata={result['metadata']}")
|
|
||||||
|
|
||||||
# 去重(基于 text,保留 rerank_score 最大的记录)
|
|
||||||
unique_results = []
|
|
||||||
text_to_result = {}
|
|
||||||
for result in sorted_results:
|
|
||||||
text = result['text']
|
|
||||||
if text not in text_to_result or result['rerank_score'] > text_to_result[text]['rerank_score']:
|
|
||||||
text_to_result[text] = result
|
|
||||||
unique_results = list(text_to_result.values())
|
|
||||||
|
|
||||||
# 记录去重后的结果
|
|
||||||
logger.debug("去重后结果:")
|
|
||||||
for idx, result in enumerate(unique_results, 1):
|
|
||||||
logger.debug(f"去重结果 {idx} ({result['source']}): text={result['text'][:200]}..., distance={result['distance']:.4f}, rerank_score={result['rerank_score']:.6f}, metadata={result['metadata']}")
|
|
||||||
|
|
||||||
# 限制结果数量
|
|
||||||
final_results = unique_results[:limit]
|
|
||||||
logger.info(f"合并后返回 {len(final_results)} 条唯一结果")
|
|
||||||
|
|
||||||
# 移除 weighted_score 字段(若存在),保留 rerank_score 和 source
|
|
||||||
for result in final_results:
|
|
||||||
result.pop('weighted_score', None)
|
|
||||||
|
|
||||||
return final_results
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"合并搜索失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
return []
|
|
||||||
finally:
|
|
||||||
cleanup_milvus_connection()
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# 测试代码
|
|
||||||
query = "知识图谱构建需要什么技术?"
|
|
||||||
userid = "testuser1"
|
|
||||||
db_type = "textdb"
|
|
||||||
file_paths = [
|
|
||||||
"/share/wangmeihua/rag/data/test.docx",
|
|
||||||
"/share/wangmeihua/rag/data/zongshu.pdf",
|
|
||||||
"/share/wangmeihua/rag/data/qianru.pdf"
|
|
||||||
]
|
|
||||||
limit = 10
|
|
||||||
offset = 0
|
|
||||||
|
|
||||||
try:
|
|
||||||
results = combined_search(query, userid, db_type, file_paths, limit, offset)
|
|
||||||
print(f"搜索结果 ({len(results)} 条):")
|
|
||||||
for idx, result in enumerate(results, 1):
|
|
||||||
print(f"结果 {idx}:")
|
|
||||||
print(f"内容: {result['text'][:200]}...")
|
|
||||||
print(f"距离: {result['distance']}")
|
|
||||||
print(f"来源: {result['source']}")
|
|
||||||
print(f"重排序分数: {result['rerank_score']}")
|
|
||||||
print(f"元数据: {result['metadata']}")
|
|
||||||
print("-" * 50)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"搜索失败: {str(e)}")
|
|
||||||
@ -1,138 +0,0 @@
|
|||||||
import logging
|
|
||||||
import yaml
|
|
||||||
import os
|
|
||||||
from pymilvus import connections, Collection, utility
|
|
||||||
from vector import initialize_milvus_connection
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
MILVUS_DB_PATH = config['database']['milvus_db_path']
|
|
||||||
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
|
|
||||||
except Exception as e:
|
|
||||||
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"无法加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
for handler in (logging.FileHandler(config['logging']['file'], encoding='utf-8'), logging.StreamHandler()):
|
|
||||||
handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(handler)
|
|
||||||
|
|
||||||
def delete_document(db_type: str, userid: str, filename: str) -> bool:
|
|
||||||
"""
|
|
||||||
根据 db_type、userid 和 filename 删除用户的指定文件数据。
|
|
||||||
|
|
||||||
参数:
|
|
||||||
db_type (str): 数据库类型(如 'textdb', 'pptdb')
|
|
||||||
userid (str): 用户 ID
|
|
||||||
filename (str): 文件名(如 'test.docx')
|
|
||||||
|
|
||||||
返回:
|
|
||||||
bool: 删除是否成功
|
|
||||||
|
|
||||||
异常:
|
|
||||||
ValueError: 参数无效
|
|
||||||
RuntimeError: 数据库操作失败
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# 参数验证
|
|
||||||
if not db_type or "_" in db_type:
|
|
||||||
raise ValueError("db_type 不能为空且不能包含下划线")
|
|
||||||
if not userid or "_" in userid:
|
|
||||||
raise ValueError("userid 不能为空且不能包含下划线")
|
|
||||||
if not filename:
|
|
||||||
raise ValueError("filename 不能为空")
|
|
||||||
if len(db_type) > 100 or len(userid) > 100 or len(filename) > 255:
|
|
||||||
raise ValueError("db_type、userid 或 filename 的长度超出限制")
|
|
||||||
|
|
||||||
# 初始化 Milvus 连接
|
|
||||||
initialize_milvus_connection()
|
|
||||||
logger.debug(f"已连接到 Milvus Lite,路径: {MILVUS_DB_PATH}")
|
|
||||||
|
|
||||||
# 检查集合是否存在
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
return False
|
|
||||||
|
|
||||||
# 加载集合
|
|
||||||
try:
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
logger.debug(f"加载集合: {collection_name}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载集合 {collection_name} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载集合失败: {str(e)}")
|
|
||||||
|
|
||||||
# 查询匹配的 document_id
|
|
||||||
expr = f"userid == '{userid}' and filename == '{filename}'"
|
|
||||||
logger.debug(f"查询表达式: {expr}")
|
|
||||||
try:
|
|
||||||
results = collection.query(
|
|
||||||
expr=expr,
|
|
||||||
output_fields=["document_id"],
|
|
||||||
limit=1000
|
|
||||||
)
|
|
||||||
if not results:
|
|
||||||
logger.warning(f"没有找到 userid={userid}, filename={filename} 的记录")
|
|
||||||
return False
|
|
||||||
document_ids = list(set(result["document_id"] for result in results if "document_id" in result))
|
|
||||||
logger.debug(f"找到 {len(document_ids)} 个 document_id: {document_ids}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"查询 document_id 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"查询失败: {str(e)}")
|
|
||||||
|
|
||||||
# 执行删除
|
|
||||||
total_deleted = 0
|
|
||||||
for doc_id in document_ids:
|
|
||||||
try:
|
|
||||||
delete_expr = f"userid == '{userid}' and document_id == '{doc_id}'"
|
|
||||||
logger.debug(f"删除表达式: {delete_expr}")
|
|
||||||
delete_result = collection.delete(delete_expr)
|
|
||||||
deleted_count = delete_result.delete_count
|
|
||||||
total_deleted += deleted_count
|
|
||||||
logger.info(f"成功删除 document_id={doc_id} 的 {deleted_count} 条记录")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"删除 document_id={doc_id} 失败: {str(e)}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
if total_deleted == 0:
|
|
||||||
logger.warning(f"没有删除任何记录,userid={userid}, filename={filename}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
logger.info(f"总计删除 {total_deleted} 条记录,userid={userid}, filename={filename}")
|
|
||||||
return True
|
|
||||||
|
|
||||||
except ValueError as ve:
|
|
||||||
logger.error(f"参数验证失败: {str(ve)}")
|
|
||||||
return False
|
|
||||||
except RuntimeError as re:
|
|
||||||
logger.error(f"数据库操作失败: {str(re)}")
|
|
||||||
return False
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"删除文件失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
return False
|
|
||||||
finally:
|
|
||||||
try:
|
|
||||||
connections.disconnect("default")
|
|
||||||
logger.debug("已断开 Milvus 连接")
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"断开 Milvus 连接失败: {str(e)}")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# 测试用例
|
|
||||||
db_type = "textdb"
|
|
||||||
userid = "testuser2"
|
|
||||||
filename = "test.docx"
|
|
||||||
|
|
||||||
logger.info(f"测试:删除 userid={userid}, filename={filename} 的文件")
|
|
||||||
result = delete_document(db_type, userid, filename)
|
|
||||||
print(f"删除结果: {result}")
|
|
||||||
183
rag/embed.py
183
rag/embed.py
@ -1,183 +0,0 @@
|
|||||||
import os
|
|
||||||
import uuid
|
|
||||||
import yaml
|
|
||||||
import logging
|
|
||||||
from datetime import datetime
|
|
||||||
from typing import List
|
|
||||||
from langchain_core.documents import Document
|
|
||||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
||||||
from pymilvus import connections
|
|
||||||
from vector import get_vector_db
|
|
||||||
from filetxt.loader import fileloader
|
|
||||||
from extract import extract_and_save_triplets
|
|
||||||
from kgc import KnowledgeGraph
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
MILVUS_DB_PATH = config['database']['milvus_db_path']
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"无法加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
logger.handlers.clear()
|
|
||||||
logger.propagate = False
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
|
|
||||||
file_handler.setFormatter(formatter)
|
|
||||||
stream_handler = logging.StreamHandler()
|
|
||||||
stream_handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(file_handler)
|
|
||||||
logger.addHandler(stream_handler)
|
|
||||||
|
|
||||||
def generate_document_id() -> str:
|
|
||||||
"""为文件生成唯一的 document_id"""
|
|
||||||
return str(uuid.uuid4())
|
|
||||||
|
|
||||||
def load_and_split_data(file_path: str, userid: str, document_id: str) -> List[Document]:
|
|
||||||
"""
|
|
||||||
加载文件,分片并生成带有元数据的 Document 对象。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if not os.path.exists(file_path):
|
|
||||||
raise ValueError(f"文件 {file_path} 不存在")
|
|
||||||
if os.path.getsize(file_path) == 0:
|
|
||||||
raise ValueError(f"文件 {file_path} 为空")
|
|
||||||
logger.debug(f"检查文件: {file_path}, 大小: {os.path.getsize(file_path)} 字节")
|
|
||||||
ext = file_path.rsplit('.', 1)[1].lower()
|
|
||||||
logger.debug(f"文件扩展名: {ext}")
|
|
||||||
|
|
||||||
logger.debug("开始加载文件")
|
|
||||||
text = fileloader(file_path)
|
|
||||||
if not text or not text.strip():
|
|
||||||
raise ValueError(f"文件 {file_path} 加载为空")
|
|
||||||
|
|
||||||
document = Document(page_content=text)
|
|
||||||
logger.debug(f"加载完成,生成 1 个文档")
|
|
||||||
|
|
||||||
text_splitter = RecursiveCharacterTextSplitter(
|
|
||||||
chunk_size=2000,
|
|
||||||
chunk_overlap=200,
|
|
||||||
length_function=len,
|
|
||||||
)
|
|
||||||
chunks = text_splitter.split_documents([document])
|
|
||||||
logger.debug(f"分割完成,生成 {len(chunks)} 个文档块")
|
|
||||||
|
|
||||||
filename = os.path.basename(file_path)
|
|
||||||
upload_time = datetime.now().isoformat()
|
|
||||||
documents = []
|
|
||||||
for i, chunk in enumerate(chunks):
|
|
||||||
chunk.metadata.update({
|
|
||||||
'userid': userid,
|
|
||||||
'document_id': document_id,
|
|
||||||
'filename': filename,
|
|
||||||
'file_path': file_path,
|
|
||||||
'upload_time': upload_time,
|
|
||||||
'file_type': ext,
|
|
||||||
'chunk_index': i,
|
|
||||||
'source': file_path,
|
|
||||||
})
|
|
||||||
required_fields = ['userid', 'document_id', 'filename', 'file_path', 'upload_time', 'file_type']
|
|
||||||
if not all(field in chunk.metadata and chunk.metadata[field] for field in required_fields):
|
|
||||||
raise ValueError(f"文档元数据缺少必需字段或值为空: {chunk.metadata}")
|
|
||||||
documents.append(chunk)
|
|
||||||
logger.debug(f"生成文档块 {i}: metadata={chunk.metadata}")
|
|
||||||
|
|
||||||
logger.debug(f"文件 {file_path} 加载并分割为 {len(documents)} 个文档块,document_id: {document_id}")
|
|
||||||
return documents
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载或分割文件 {file_path} 失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
raise ValueError(f"加载或分割文件失败: {str(e)}")
|
|
||||||
|
|
||||||
def embed(file_path: str, userid: str, db_type: str) -> bool:
|
|
||||||
"""
|
|
||||||
嵌入文件到 Milvus 向量数据库,抽取三元组保存到指定路径,并将三元组存储到 Neo4j。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if not userid or not db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能为空")
|
|
||||||
if "_" in userid:
|
|
||||||
raise ValueError("userid 不能包含下划线")
|
|
||||||
if "_" in db_type:
|
|
||||||
raise ValueError("db_type 不能包含下划线")
|
|
||||||
if not os.path.exists(file_path):
|
|
||||||
raise ValueError(f"文件 {file_path} 不存在")
|
|
||||||
|
|
||||||
supported_formats = {'pdf', 'doc', 'docx', 'xlsx', 'xls', 'ppt', 'pptx', 'csv', 'txt'}
|
|
||||||
ext = file_path.rsplit('.', 1)[1].lower()
|
|
||||||
if ext not in supported_formats:
|
|
||||||
logger.error(f"文件 {file_path} 格式不支持,支持的格式: {', '.join(supported_formats)}")
|
|
||||||
raise ValueError(f"不支持的文件格式: {ext}, 支持的格式: {', '.join(supported_formats)}")
|
|
||||||
|
|
||||||
document_id = generate_document_id()
|
|
||||||
logger.info(f"生成 document_id: {document_id} for file: {file_path}")
|
|
||||||
|
|
||||||
logger.info(f"开始处理文件 {file_path},userid: {userid},db_type: {db_type}")
|
|
||||||
chunks = load_and_split_data(file_path, userid, document_id)
|
|
||||||
if not chunks:
|
|
||||||
logger.error(f"文件 {file_path} 未生成任何文档块")
|
|
||||||
raise ValueError("未生成任何文档块")
|
|
||||||
|
|
||||||
logger.debug(f"处理文件 {file_path},生成 {len(chunks)} 个文档块")
|
|
||||||
logger.debug(f"第一个文档块: {chunks[0].page_content[:200]}")
|
|
||||||
|
|
||||||
db = get_vector_db(userid, db_type, documents=chunks)
|
|
||||||
if not db:
|
|
||||||
logger.error(f"无法初始化或插入到向量数据库 ragdb_{db_type}")
|
|
||||||
raise RuntimeError(f"数据库操作失败")
|
|
||||||
|
|
||||||
try:
|
|
||||||
full_text = fileloader(file_path)
|
|
||||||
if full_text and full_text.strip():
|
|
||||||
success = extract_and_save_triplets(full_text, document_id, userid)
|
|
||||||
triplet_file_path = f"/share/wangmeihua/rag/triples/{document_id}_{userid}.txt"
|
|
||||||
if success and os.path.exists(triplet_file_path):
|
|
||||||
logger.info(f"文件 {file_path} 三元组保存到: {triplet_file_path}")
|
|
||||||
try:
|
|
||||||
kg = KnowledgeGraph(data_path=triplet_file_path, document_id=document_id)
|
|
||||||
logger.info(f"Step 1: 导入图谱节点到 Neo4j,document_id: {document_id}")
|
|
||||||
kg.create_graphnodes()
|
|
||||||
logger.info(f"Step 2: 导入图谱边到 Neo4j,document_id: {document_id}")
|
|
||||||
kg.create_graphrels()
|
|
||||||
logger.info(f"Step 3: 导出 Neo4j 节点数据,document_id: {document_id}")
|
|
||||||
kg.export_data()
|
|
||||||
logger.info(f"文件 {file_path} 三元组成功插入 Neo4j")
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"将三元组插入 Neo4j 失败: {str(e)},但不影响 Milvus 嵌入")
|
|
||||||
else:
|
|
||||||
logger.warning(f"文件 {file_path} 的三元组抽取失败或文件不存在: {triplet_file_path}")
|
|
||||||
else:
|
|
||||||
logger.warning(f"文件 {file_path} 内容为空,无法抽取三元组")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"文件 {file_path} 三元组抽取失败: {str(e)},但不影响向量化")
|
|
||||||
|
|
||||||
logger.info(f"文件 {file_path} 成功嵌入到数据库 ragdb_{db_type}")
|
|
||||||
return True
|
|
||||||
|
|
||||||
except ValueError as ve:
|
|
||||||
logger.error(f"嵌入文件 {file_path} 失败: {str(ve)}")
|
|
||||||
return False
|
|
||||||
except RuntimeError as re:
|
|
||||||
logger.error(f"嵌入文件 {file_path} 失败: {str(re)}")
|
|
||||||
return False
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"嵌入文件 {file_path} 失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
return False
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
test_file = "/share/wangmeihua/rag/data/test.docx"
|
|
||||||
userid = "testuser1"
|
|
||||||
db_type = "textdb"
|
|
||||||
result = embed(test_file, userid, db_type)
|
|
||||||
print(f"嵌入结果: {result}")
|
|
||||||
225
rag/extract.py
225
rag/extract.py
@ -1,225 +0,0 @@
|
|||||||
import os
|
|
||||||
import torch
|
|
||||||
import re
|
|
||||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
||||||
import logging
|
|
||||||
import yaml
|
|
||||||
import time
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"无法加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
for handler in (logging.FileHandler(config['logging']['file'], encoding='utf-8'), logging.StreamHandler()):
|
|
||||||
handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(handler)
|
|
||||||
|
|
||||||
# 三元组保存路径
|
|
||||||
TRIPLES_OUTPUT_DIR = "/share/wangmeihua/rag/triples"
|
|
||||||
os.makedirs(TRIPLES_OUTPUT_DIR, exist_ok=True)
|
|
||||||
|
|
||||||
# 加载 mREBEL 模型和分词器
|
|
||||||
local_path = "/share/models/Babelscape/mrebel-large"
|
|
||||||
try:
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(local_path, src_lang="zh_CN", tgt_lang="tp_XX")
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(local_path)
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
||||||
model = model.to(device)
|
|
||||||
triplet_id = tokenizer.convert_tokens_to_ids("<triplet>")
|
|
||||||
logger.debug(f"成功加载 mREBEL 模型,分词器 triplet_id: {triplet_id}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载 mREBEL 模型失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载 mREBEL 模型失败: {str(e)}")
|
|
||||||
|
|
||||||
# 优化生成参数
|
|
||||||
gen_kwargs = {
|
|
||||||
"max_length": 512,
|
|
||||||
"min_length": 10,
|
|
||||||
"length_penalty": 0.5,
|
|
||||||
"num_beams": 3,
|
|
||||||
"num_return_sequences": 1,
|
|
||||||
"no_repeat_ngram_size": 2,
|
|
||||||
"early_stopping": True,
|
|
||||||
"decoder_start_token_id": triplet_id,
|
|
||||||
}
|
|
||||||
|
|
||||||
def split_document(text: str, max_chunk_size: int = 150) -> list:
|
|
||||||
"""分割文档为语义完整的块"""
|
|
||||||
sentences = re.split(r'(?<=[。!?;\n])', text)
|
|
||||||
chunks = []
|
|
||||||
current_chunk = ""
|
|
||||||
|
|
||||||
for sentence in sentences:
|
|
||||||
if len(current_chunk) + len(sentence) <= max_chunk_size:
|
|
||||||
current_chunk += sentence
|
|
||||||
else:
|
|
||||||
if current_chunk:
|
|
||||||
chunks.append(current_chunk)
|
|
||||||
current_chunk = sentence
|
|
||||||
|
|
||||||
if current_chunk:
|
|
||||||
chunks.append(current_chunk)
|
|
||||||
|
|
||||||
return chunks
|
|
||||||
|
|
||||||
def extract_triplets_typed(text: str) -> list:
|
|
||||||
"""解析 mREBEL 生成文本,匹配 <triplet> <entity1> <type1> <entity2> <type2> <relation> 格式"""
|
|
||||||
triplets = []
|
|
||||||
logger.debug(f"原始生成文本: {text}")
|
|
||||||
|
|
||||||
# 分割标记
|
|
||||||
tokens = []
|
|
||||||
in_tag = False
|
|
||||||
buffer = ""
|
|
||||||
for char in text:
|
|
||||||
if char == '<':
|
|
||||||
in_tag = True
|
|
||||||
if buffer:
|
|
||||||
tokens.append(buffer.strip())
|
|
||||||
buffer = ""
|
|
||||||
buffer += char
|
|
||||||
elif char == '>':
|
|
||||||
in_tag = False
|
|
||||||
buffer += char
|
|
||||||
tokens.append(buffer.strip())
|
|
||||||
buffer = ""
|
|
||||||
else:
|
|
||||||
buffer += char
|
|
||||||
if buffer:
|
|
||||||
tokens.append(buffer.strip())
|
|
||||||
|
|
||||||
# 过滤特殊标记
|
|
||||||
special_tokens = ["<s>", "<pad>", "</s>", "tp_XX", "__en__", "__zh__", "zh_CN"]
|
|
||||||
tokens = [t for t in tokens if t not in special_tokens and t]
|
|
||||||
|
|
||||||
logger.debug(f"处理后标记: {tokens}")
|
|
||||||
|
|
||||||
# 解析三元组
|
|
||||||
i = 0
|
|
||||||
while i < len(tokens):
|
|
||||||
if tokens[i] == "<triplet>" and i + 5 < len(tokens):
|
|
||||||
entity1 = tokens[i + 1]
|
|
||||||
type1 = tokens[i + 2][1:-1] if tokens[i + 2].startswith("<") and tokens[i + 2].endswith(">") else ""
|
|
||||||
entity2 = tokens[i + 3]
|
|
||||||
type2 = tokens[i + 4][1:-1] if tokens[i + 4].startswith("<") and tokens[i + 4].endswith(">") else ""
|
|
||||||
relation = tokens[i + 5]
|
|
||||||
|
|
||||||
if entity1 and type1 and entity2 and type2 and relation:
|
|
||||||
triplets.append({
|
|
||||||
'head': entity1.strip(),
|
|
||||||
'head_type': type1,
|
|
||||||
'type': relation.strip(),
|
|
||||||
'tail': entity2.strip(),
|
|
||||||
'tail_type': type2
|
|
||||||
})
|
|
||||||
logger.debug(f"添加三元组: {entity1}({type1}) - {relation} - {entity2}({type2})")
|
|
||||||
i += 6
|
|
||||||
else:
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
return triplets
|
|
||||||
|
|
||||||
def extract_and_save_triplets(text: str, document_id: str, userid: str) -> bool:
|
|
||||||
"""
|
|
||||||
从文本中抽取三元组并保存到指定路径。
|
|
||||||
|
|
||||||
参数:
|
|
||||||
text (str): 输入文本
|
|
||||||
document_id (str): 文档ID
|
|
||||||
userid (str): 用户ID
|
|
||||||
|
|
||||||
返回:
|
|
||||||
bool: 三元组抽取和保存是否成功
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if not text or not document_id or not userid:
|
|
||||||
raise ValueError("text、document_id 和 userid 不能为空")
|
|
||||||
if "_" in document_id or "_" in userid:
|
|
||||||
raise ValueError("document_id 和 userid 不能包含下划线")
|
|
||||||
|
|
||||||
start_time = time.time()
|
|
||||||
logger.info(f"开始抽取文档 {document_id} 的三元组,userid: {userid}")
|
|
||||||
|
|
||||||
# 分割文本为语义块
|
|
||||||
text_chunks = split_document(text, max_chunk_size=150)
|
|
||||||
logger.debug(f"分割为 {len(text_chunks)} 个文本块")
|
|
||||||
|
|
||||||
# 处理所有文本块
|
|
||||||
all_triplets = []
|
|
||||||
for i, chunk in enumerate(text_chunks):
|
|
||||||
logger.debug(f"处理块 {i + 1}/{len(text_chunks)}: {chunk[:50]}...")
|
|
||||||
|
|
||||||
# 分词
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
chunk,
|
|
||||||
max_length=256,
|
|
||||||
padding=True,
|
|
||||||
truncation=True,
|
|
||||||
return_tensors="pt"
|
|
||||||
).to(device)
|
|
||||||
|
|
||||||
# 生成
|
|
||||||
try:
|
|
||||||
generated_tokens = model.generate(
|
|
||||||
model_inputs["input_ids"],
|
|
||||||
attention_mask=model_inputs["attention_mask"],
|
|
||||||
**gen_kwargs,
|
|
||||||
)
|
|
||||||
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False)
|
|
||||||
for idx, sentence in enumerate(decoded_preds):
|
|
||||||
logger.debug(f"块 {i + 1} 生成文本: {sentence}")
|
|
||||||
triplets = extract_triplets_typed(sentence)
|
|
||||||
if triplets:
|
|
||||||
logger.debug(f"块 {i + 1} 提取到 {len(triplets)} 个三元组")
|
|
||||||
all_triplets.extend(triplets)
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"处理块 {i + 1} 时出错: {str(e)}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 去重
|
|
||||||
unique_triplets = []
|
|
||||||
seen = set()
|
|
||||||
for t in all_triplets:
|
|
||||||
identifier = (t['head'].lower(), t['type'].lower(), t['tail'].lower())
|
|
||||||
if identifier not in seen:
|
|
||||||
seen.add(identifier)
|
|
||||||
unique_triplets.append(t)
|
|
||||||
|
|
||||||
# 保存结果
|
|
||||||
output_file = os.path.join(TRIPLES_OUTPUT_DIR, f"{document_id}_{userid}.txt")
|
|
||||||
try:
|
|
||||||
with open(output_file, "w", encoding="utf-8") as f:
|
|
||||||
for t in unique_triplets:
|
|
||||||
f.write(f"{t['head']}\t{t['type']}\t{t['tail']}\t{t['head_type']}\t{t['tail_type']}\n")
|
|
||||||
logger.info(f"文档 {document_id} 的 {len(unique_triplets)} 个三元组已保存到: {output_file}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"保存文档 {document_id} 的三元组失败: {str(e)}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
end_time = time.time()
|
|
||||||
logger.info(f"文档 {document_id} 三元组抽取完成,耗时: {end_time - start_time:.2f} 秒")
|
|
||||||
return True
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"抽取或保存三元组失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
return False
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# 测试用例
|
|
||||||
test_text = "知识图谱是一个结构化的语义知识库。深度学习是基于深层神经网络的机器学习子集。"
|
|
||||||
document_id = "testdoc123"
|
|
||||||
userid = "testuser1"
|
|
||||||
result = extract_and_save_triplets(test_text, document_id, userid)
|
|
||||||
print(f"抽取结果: {result}")
|
|
||||||
@ -1,290 +0,0 @@
|
|||||||
import os
|
|
||||||
import logging
|
|
||||||
import yaml
|
|
||||||
import numpy as np
|
|
||||||
from typing import List, Dict, Any
|
|
||||||
from pymilvus import Collection, utility
|
|
||||||
from langchain_huggingface import HuggingFaceEmbeddings
|
|
||||||
from vector import initialize_milvus_connection
|
|
||||||
from searchquery import extract_entities, match_triplets
|
|
||||||
from rerank import rerank_results
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
|
|
||||||
except Exception as e:
|
|
||||||
raise RuntimeError(f"无法加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
logger.handlers.clear()
|
|
||||||
logger.propagate = False
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
try:
|
|
||||||
with open(config['logging']['file'], 'a', encoding='utf-8') as f:
|
|
||||||
pass
|
|
||||||
except Exception as e:
|
|
||||||
raise RuntimeError(f"日志文件 {config['logging']['file']} 不可写: {str(e)}")
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
|
|
||||||
file_handler.setFormatter(formatter)
|
|
||||||
stream_handler = logging.StreamHandler()
|
|
||||||
stream_handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(file_handler)
|
|
||||||
logger.addHandler(stream_handler)
|
|
||||||
|
|
||||||
# 初始化嵌入模型
|
|
||||||
embedding = HuggingFaceEmbeddings(
|
|
||||||
model_name=TEXT_EMBEDDING_MODEL,
|
|
||||||
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
|
||||||
encode_kwargs={'normalize_embeddings': True}
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
test_vector = embedding.embed_query("test")
|
|
||||||
if len(test_vector) != 1024:
|
|
||||||
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
|
|
||||||
logger.debug("嵌入模型加载成功")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
|
|
||||||
def fused_search(
|
|
||||||
query: str,
|
|
||||||
userid: str,
|
|
||||||
db_type: str,
|
|
||||||
file_paths: List[str],
|
|
||||||
limit: int = 10,
|
|
||||||
offset: int = 0,
|
|
||||||
use_rerank: bool = True
|
|
||||||
) -> List[Dict[str, Any]]:
|
|
||||||
"""
|
|
||||||
融合 RAG 和三元组召回文本块:
|
|
||||||
- 调用 searchquery.py 的 extract_entities 和 match_triplets 获取三元组。
|
|
||||||
- 将所有匹配三元组拼接为融合文本,向量化后在 Milvus 中搜索。
|
|
||||||
|
|
||||||
参数:
|
|
||||||
query (str): 查询文本
|
|
||||||
userid (str): 用户 ID
|
|
||||||
db_type (str): 数据库类型 (e.g., 'textdb')
|
|
||||||
file_paths (List[str]): 文件路径列表
|
|
||||||
limit (int): 返回结果数量
|
|
||||||
offset (int): 偏移量
|
|
||||||
use_rerank (bool): 是否使用重排序
|
|
||||||
|
|
||||||
返回:
|
|
||||||
List[Dict[str, Any]]: 召回结果,包含 text、distance、metadata
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
logger.info(f"开始融合搜索: query={query}, userid={userid}, db_type={db_type}")
|
|
||||||
|
|
||||||
# 参数验证
|
|
||||||
if not query or not userid or not db_type or not file_paths:
|
|
||||||
raise ValueError("query、userid、db_type 和 file_paths 不能为空")
|
|
||||||
if "_" in userid or "_" in db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能包含下划线")
|
|
||||||
|
|
||||||
# 初始化 Milvus 连接
|
|
||||||
connections = initialize_milvus_connection()
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
return []
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
logger.debug(f"加载 Milvus 集合: {collection_name}")
|
|
||||||
|
|
||||||
# 提取实体
|
|
||||||
query_entities = extract_entities(query)
|
|
||||||
logger.debug(f"提取实体: {query_entities}")
|
|
||||||
|
|
||||||
# 收集所有结果
|
|
||||||
results = []
|
|
||||||
search_params = {"metric_type": "COSINE", "params": {"nprobe": 10}}
|
|
||||||
|
|
||||||
for file_path in file_paths:
|
|
||||||
filename = os.path.basename(file_path)
|
|
||||||
logger.debug(f"处理文件: {filename}")
|
|
||||||
|
|
||||||
# 获取 document_id
|
|
||||||
results_query = collection.query(
|
|
||||||
expr=f"userid == '{userid}' and filename == '{filename}'",
|
|
||||||
output_fields=["document_id"],
|
|
||||||
limit=1
|
|
||||||
)
|
|
||||||
if not results_query:
|
|
||||||
logger.warning(f"未找到 userid {userid} 和 filename {filename} 对应的文档")
|
|
||||||
continue
|
|
||||||
document_id = results_query[0]["document_id"]
|
|
||||||
logger.debug(f"找到 document_id: {document_id}")
|
|
||||||
|
|
||||||
# 获取匹配的三元组
|
|
||||||
matched_triplets = match_triplets(query, query_entities, userid, document_id)
|
|
||||||
logger.debug(f"匹配三元组: {matched_triplets}")
|
|
||||||
|
|
||||||
# 若无三元组,使用原查询向量化
|
|
||||||
if not matched_triplets:
|
|
||||||
logger.debug(f"无匹配三元组,使用原查询: {query}")
|
|
||||||
query_vector = embedding.embed_query(query)
|
|
||||||
expr = f"userid == '{userid}' and filename == '{filename}'"
|
|
||||||
milvus_results = collection.search(
|
|
||||||
data=[query_vector],
|
|
||||||
anns_field="vector",
|
|
||||||
param=search_params,
|
|
||||||
limit=limit,
|
|
||||||
expr=expr,
|
|
||||||
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
offset=offset
|
|
||||||
)
|
|
||||||
for hits in milvus_results:
|
|
||||||
for hit in hits:
|
|
||||||
result = {
|
|
||||||
"text": hit.entity.get("text"),
|
|
||||||
"distance": hit.distance,
|
|
||||||
"source": "fused_query",
|
|
||||||
"metadata": {
|
|
||||||
"userid": hit.entity.get("userid"),
|
|
||||||
"document_id": hit.entity.get("document_id"),
|
|
||||||
"filename": hit.entity.get("filename"),
|
|
||||||
"file_path": hit.entity.get("file_path"),
|
|
||||||
"upload_time": hit.entity.get("upload_time"),
|
|
||||||
"file_type": hit.entity.get("file_type")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
results.append(result)
|
|
||||||
logger.debug(f"召回: text={result['text'][:100]}..., distance={result['distance']}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 拼接所有三元组
|
|
||||||
triplet_texts = []
|
|
||||||
for triplet in matched_triplets:
|
|
||||||
head = triplet['head']
|
|
||||||
type = triplet['type']
|
|
||||||
tail = triplet['tail']
|
|
||||||
if not head or not type or not tail:
|
|
||||||
logger.debug(f"无效三元组: {triplet}")
|
|
||||||
continue
|
|
||||||
triplet_texts.append(f"{head} {type} {tail}")
|
|
||||||
if not triplet_texts:
|
|
||||||
logger.debug(f"无有效三元组,使用原查询: {query}")
|
|
||||||
query_vector = embedding.embed_query(query)
|
|
||||||
expr = f"userid == '{userid}' and filename == '{filename}'"
|
|
||||||
milvus_results = collection.search(
|
|
||||||
data=[query_vector],
|
|
||||||
anns_field="vector",
|
|
||||||
param=search_params,
|
|
||||||
limit=5,
|
|
||||||
expr=expr,
|
|
||||||
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
offset=offset
|
|
||||||
)
|
|
||||||
for hits in milvus_results:
|
|
||||||
for hit in hits:
|
|
||||||
result = {
|
|
||||||
"text": hit.entity.get("text"),
|
|
||||||
"distance": hit.distance,
|
|
||||||
"source": "fused_query",
|
|
||||||
"metadata": {
|
|
||||||
"userid": hit.entity.get("userid"),
|
|
||||||
"document_id": hit.entity.get("document_id"),
|
|
||||||
"filename": hit.entity.get("filename"),
|
|
||||||
"file_path": hit.entity.get("file_path"),
|
|
||||||
"upload_time": hit.entity.get("upload_time"),
|
|
||||||
"file_type": hit.entity.get("file_type")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
results.append(result)
|
|
||||||
logger.debug(f"召回: text={result['text'][:100]}..., distance={result['distance']}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 生成融合文本
|
|
||||||
fused_text = f"{query} {' '.join(triplet_texts)}"
|
|
||||||
logger.debug(f"融合文本: {fused_text}")
|
|
||||||
|
|
||||||
# 向量化
|
|
||||||
fused_vector = embedding.embed_query(fused_text)
|
|
||||||
fused_vector = np.array(fused_vector) / np.linalg.norm(fused_vector)
|
|
||||||
logger.debug(f"生成融合向量,维度: {len(fused_vector)}")
|
|
||||||
|
|
||||||
# Milvus 搜索
|
|
||||||
expr = f"userid == '{userid}' and filename == '{filename}'"
|
|
||||||
milvus_results = collection.search(
|
|
||||||
data=[fused_vector],
|
|
||||||
anns_field="vector",
|
|
||||||
param=search_params,
|
|
||||||
limit=5,
|
|
||||||
expr=expr,
|
|
||||||
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
offset=offset
|
|
||||||
)
|
|
||||||
|
|
||||||
for hits in milvus_results:
|
|
||||||
for hit in hits:
|
|
||||||
result = {
|
|
||||||
"text": hit.entity.get("text"),
|
|
||||||
"distance": hit.distance,
|
|
||||||
"source": f"fused_triplets_{len(triplet_texts)}",
|
|
||||||
"metadata": {
|
|
||||||
"userid": hit.entity.get("userid"),
|
|
||||||
"document_id": hit.entity.get("document_id"),
|
|
||||||
"filename": hit.entity.get("filename"),
|
|
||||||
"file_path": hit.entity.get("file_path"),
|
|
||||||
"upload_time": hit.entity.get("upload_time"),
|
|
||||||
"file_type": hit.entity.get("file_type")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
results.append(result)
|
|
||||||
logger.debug(f"召回: text={result['text'][:100]}..., distance={result['distance']}")
|
|
||||||
|
|
||||||
# 去重
|
|
||||||
unique_results = []
|
|
||||||
seen_texts = set()
|
|
||||||
for result in results:
|
|
||||||
text = result['text']
|
|
||||||
if text not in seen_texts:
|
|
||||||
seen_texts.add(text)
|
|
||||||
unique_results.append(result)
|
|
||||||
logger.debug(f"去重后结果数量: {len(unique_results)}")
|
|
||||||
|
|
||||||
# 可选:重排序
|
|
||||||
if use_rerank and unique_results:
|
|
||||||
logger.debug("开始重排序")
|
|
||||||
reranked_results = rerank_results(query, unique_results)
|
|
||||||
# 按 rerank_score 降序排序
|
|
||||||
reranked_results = sorted(reranked_results, key=lambda x: x['rerank_score'], reverse=True)
|
|
||||||
for i, result in enumerate(reranked_results):
|
|
||||||
logger.debug(f"排序结果 {i+1}: text={result['text'][:100]}..., distance={result['distance']}, rerank_score={result['rerank_score']}")
|
|
||||||
return reranked_results[:limit]
|
|
||||||
|
|
||||||
# 按 distance 降序排序
|
|
||||||
sorted_results = sorted(unique_results, key=lambda x: x['distance'], reverse=True)
|
|
||||||
for i, result in enumerate(sorted_results):
|
|
||||||
logger.debug(f"排序结果 {i+1}: text={result['text'][:100]}..., distance={result['distance']}")
|
|
||||||
return sorted_results[:limit]
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"融合搜索失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
return []
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
query = "知识图谱构建需要什么技术?"
|
|
||||||
userid = "testuser1"
|
|
||||||
db_type = "textdb"
|
|
||||||
file_paths = [
|
|
||||||
"/share/wangmeihua/rag/data/test.docx",
|
|
||||||
"/share/wangmeihua/rag/data/zongshu.pdf",
|
|
||||||
"/share/wangmeihua/rag/data/qianru.pdf"
|
|
||||||
]
|
|
||||||
results = fused_search(query, userid, db_type, file_paths, limit=10, offset=0)
|
|
||||||
for i, result in enumerate(results):
|
|
||||||
print(f"Result {i+1}:")
|
|
||||||
print(f"Text: {result['text'][:200]}...")
|
|
||||||
print(f"Distance: {result['distance']}")
|
|
||||||
print(f"Source: {result['source']}")
|
|
||||||
print(f"Metadata: {result['metadata']}\n")
|
|
||||||
81
rag/kdb.py
81
rag/kdb.py
@ -1,81 +0,0 @@
|
|||||||
|
|
||||||
from traceback import format_exc
|
|
||||||
from appPublic.uniqueID import getID
|
|
||||||
from appPublic.timeUtils import curDateString
|
|
||||||
from appPublic.dictObject import DictObject
|
|
||||||
from sqlor.dbpools import DBPools
|
|
||||||
from ahserver.serverenv import get_serverenv
|
|
||||||
from ahserver.filestorage import FileStorage
|
|
||||||
|
|
||||||
async def add_kdb(kdb:dict) -> None:
|
|
||||||
"""
|
|
||||||
添加知识库
|
|
||||||
"""
|
|
||||||
kdb = DictObject(**kdb)
|
|
||||||
kdb.parentid=None
|
|
||||||
if kdb.id is None:
|
|
||||||
kdb.id = getID()
|
|
||||||
kdb.entity_type = '0'
|
|
||||||
kdb.create_date = curDateString()
|
|
||||||
if kdb.orgid is None:
|
|
||||||
e = Exception(f'Can not add none orgid kdb')
|
|
||||||
exception(f'{e}\n{format_exc()}')
|
|
||||||
raise e
|
|
||||||
|
|
||||||
f = get_serverenv('get_module_dbname')
|
|
||||||
dbname = f('rag')
|
|
||||||
db = DBPools()
|
|
||||||
async with db.sqlorContext(dbname) as sor:
|
|
||||||
await C('kdb', kdb.copy())
|
|
||||||
|
|
||||||
async def add_dir(kdb:dict) -> None:
|
|
||||||
"""
|
|
||||||
添加子目录
|
|
||||||
"""
|
|
||||||
kdb = DictObject(**kdb)
|
|
||||||
if kdb.parentid is None:
|
|
||||||
e = Exception(f'Can not add root folder')
|
|
||||||
exception(f'{e}\n{format_exc()}')
|
|
||||||
raise e
|
|
||||||
if kdb.id is None:
|
|
||||||
kdb.id = getID()
|
|
||||||
kdb.entity_type = '1'
|
|
||||||
kdb.create_date = curDateString()
|
|
||||||
f = get_serverenv('get_module_dbname')
|
|
||||||
dbname = f('rag')
|
|
||||||
db = DBPools()
|
|
||||||
async with db.sqlorContext(dbname) as sor:
|
|
||||||
await C('kdb', kdb.copy())
|
|
||||||
|
|
||||||
async def add_doc(doc:dict) -> None:
|
|
||||||
"""
|
|
||||||
添加文档
|
|
||||||
"""
|
|
||||||
doc = DictObject(**doc)
|
|
||||||
if doc.parentid is None:
|
|
||||||
e = Exception(f'Can not add root document')
|
|
||||||
exception(f'{e}\n{format_exc()}')
|
|
||||||
raise e
|
|
||||||
if doc.id is None:
|
|
||||||
doc.id = getID()
|
|
||||||
fs = FileStorage()
|
|
||||||
doc.realpath = fs.realPath(doc.webpath)
|
|
||||||
doc.create_date = curDateString()
|
|
||||||
f = get_serverenv('get_module_dbname')
|
|
||||||
dbname = f('rag')
|
|
||||||
db = DBPools()
|
|
||||||
async with db.sqlorContext(dbname) as sor:
|
|
||||||
await C('doc', doc.copy())
|
|
||||||
|
|
||||||
async def get_all_docs(sor, kdbid):
|
|
||||||
"""
|
|
||||||
获取所有kdbid下的文档,含子目录的
|
|
||||||
"""
|
|
||||||
docs = await sor.R('doc', {'parentid':kdbid})
|
|
||||||
kdbs = await sor.R('kdb', {'parentid':kdbid})
|
|
||||||
for kdb in kdbs:
|
|
||||||
docs1 = await get_all_docs(kdb.id)
|
|
||||||
docs += docs1
|
|
||||||
return docs
|
|
||||||
|
|
||||||
|
|
||||||
194
rag/kgc.py
194
rag/kgc.py
@ -1,194 +0,0 @@
|
|||||||
import os
|
|
||||||
import logging
|
|
||||||
import re
|
|
||||||
from py2neo import Graph, Node, Relationship
|
|
||||||
from typing import Set, List, Dict, Tuple
|
|
||||||
|
|
||||||
from ufw.common import share_dir
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
class KnowledgeGraph:
|
|
||||||
def __init__(self, data_path: str, document_id: str = None):
|
|
||||||
self.data_path = data_path
|
|
||||||
self.document_id = document_id or os.path.basename(data_path).split('_')[0]
|
|
||||||
self.g = Graph("bolt://10.18.34.18:7687", auth=('neo4j', '261229..wmh'))
|
|
||||||
logger.info(f"开始构建知识图谱,data_path: {self.data_path}, document_id: {self.document_id}")
|
|
||||||
# 验证 data_path 是否有效
|
|
||||||
if not os.path.exists(self.data_path):
|
|
||||||
logger.error(f"数据路径 {self.data_path} 不存在")
|
|
||||||
raise ValueError(f"数据路径 {self.data_path} 不存在")
|
|
||||||
|
|
||||||
def _normalize_label(self, entity_type: str) -> str:
|
|
||||||
"""规范化实体类型为 Neo4j 标签"""
|
|
||||||
if not entity_type or not entity_type.strip():
|
|
||||||
return 'Entity'
|
|
||||||
entity_type = re.sub(r'[^\w\s]', '', entity_type.strip())
|
|
||||||
words = entity_type.split()
|
|
||||||
label = '_'.join(word.capitalize() for word in words if word)
|
|
||||||
return label or 'Entity'
|
|
||||||
|
|
||||||
def _clean_relation(self, relation: str) -> Tuple[str, str]:
|
|
||||||
"""清洗关系,返回 (rel_type, rel_name)"""
|
|
||||||
relation = relation.strip()
|
|
||||||
if not relation:
|
|
||||||
return 'RELATED_TO', '相关'
|
|
||||||
if relation.startswith('<') and relation.endswith('>'):
|
|
||||||
cleaned_relation = relation[1:-1]
|
|
||||||
rel_name = cleaned_relation
|
|
||||||
rel_type = re.sub(r'[^\w\s]', '', cleaned_relation).replace(' ', '_').upper()
|
|
||||||
else:
|
|
||||||
rel_name = relation
|
|
||||||
rel_type = re.sub(r'[^\w\s]', '', relation).replace(' ', '_').upper()
|
|
||||||
if 'instance of' in relation.lower():
|
|
||||||
rel_type = 'INSTANCE_OF'
|
|
||||||
rel_name = '实例'
|
|
||||||
elif 'subclass of' in relation.lower():
|
|
||||||
rel_type = 'SUBCLASS_OF'
|
|
||||||
rel_name = '子类'
|
|
||||||
elif 'part of' in relation.lower():
|
|
||||||
rel_type = 'PART_OF'
|
|
||||||
rel_name = '部分'
|
|
||||||
logger.debug(f"处理关系: {relation} -> {rel_type} ({rel_name})")
|
|
||||||
return rel_type, rel_name
|
|
||||||
|
|
||||||
def read_nodes(self) -> Tuple[Dict[str, Set], Dict[str, List], List[Dict]]:
|
|
||||||
"""读取三元组数据,返回节点和关系"""
|
|
||||||
nodes_by_label = {}
|
|
||||||
relations_by_type = {}
|
|
||||||
triples = []
|
|
||||||
|
|
||||||
try:
|
|
||||||
logger.debug(f"尝试读取文件: {self.data_path}")
|
|
||||||
with open(self.data_path, 'r', encoding='utf-8') as f:
|
|
||||||
for line in f:
|
|
||||||
line = line.strip()
|
|
||||||
if not line or line.startswith('#'):
|
|
||||||
continue
|
|
||||||
parts = line.split('\t')
|
|
||||||
if len(parts) != 5:
|
|
||||||
logger.warning(f"无效行: {line}")
|
|
||||||
continue
|
|
||||||
head, relation, tail, head_type, tail_type = parts
|
|
||||||
head_label = self._normalize_label(head_type)
|
|
||||||
tail_label = self._normalize_label(tail_type)
|
|
||||||
logger.debug(f"实体类型: {head_type} -> {head_label}, {tail_type} -> {tail_label}")
|
|
||||||
|
|
||||||
if head_label not in nodes_by_label:
|
|
||||||
nodes_by_label[head_label] = set()
|
|
||||||
if tail_label not in nodes_by_label:
|
|
||||||
nodes_by_label[tail_label] = set()
|
|
||||||
nodes_by_label[head_label].add(head)
|
|
||||||
nodes_by_label[tail_label].add(tail)
|
|
||||||
|
|
||||||
rel_type, rel_name = self._clean_relation(relation)
|
|
||||||
if rel_type not in relations_by_type:
|
|
||||||
relations_by_type[rel_type] = []
|
|
||||||
relations_by_type[rel_type].append({
|
|
||||||
'head': head,
|
|
||||||
'tail': tail,
|
|
||||||
'head_label': head_label,
|
|
||||||
'tail_label': tail_label,
|
|
||||||
'rel_name': rel_name
|
|
||||||
})
|
|
||||||
|
|
||||||
triples.append({
|
|
||||||
'head': head,
|
|
||||||
'relation': relation,
|
|
||||||
'tail': tail,
|
|
||||||
'head_type': head_type,
|
|
||||||
'tail_type': tail_type
|
|
||||||
})
|
|
||||||
|
|
||||||
logger.info(f"读取节点: {sum(len(nodes) for nodes in nodes_by_label.values())} 个")
|
|
||||||
logger.info(f"读取关系: {sum(len(rels) for rels in relations_by_type.values())} 条")
|
|
||||||
return nodes_by_label, relations_by_type, triples
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"读取数据失败: {str(e)},data_path: {self.data_path}")
|
|
||||||
raise RuntimeError(f"读取数据失败: {str(e)}")
|
|
||||||
|
|
||||||
def create_node(self, label: str, nodes: Set[str]):
|
|
||||||
"""创建节点,包含 document_id 属性"""
|
|
||||||
count = 0
|
|
||||||
for node_name in nodes:
|
|
||||||
query = f"MATCH (n:{label} {{name: '{node_name}', document_id: '{self.document_id}'}}) RETURN n"
|
|
||||||
try:
|
|
||||||
if self.g.run(query).data():
|
|
||||||
continue
|
|
||||||
node = Node(label, name=node_name, document_id=self.document_id)
|
|
||||||
self.g.create(node)
|
|
||||||
count += 1
|
|
||||||
logger.debug(f"创建节点: {label} - {node_name} (document_id: {self.document_id})")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"创建节点失败: {label} - {node_name}, 错误: {str(e)}")
|
|
||||||
logger.info(f"创建 {label} 节点: {count}/{len(nodes)} 个")
|
|
||||||
return count
|
|
||||||
|
|
||||||
def create_relationship(self, rel_type: str, relations: List[Dict]):
|
|
||||||
"""创建关系"""
|
|
||||||
count = 0
|
|
||||||
total = len(relations)
|
|
||||||
seen_edges = set()
|
|
||||||
for rel in relations:
|
|
||||||
head, tail, head_label, tail_label, rel_name = (
|
|
||||||
rel['head'], rel['tail'], rel['head_label'], rel['tail_label'], rel['rel_name']
|
|
||||||
)
|
|
||||||
edge_key = f"{head_label}:{head}###{tail_label}:{tail}###{rel_type}"
|
|
||||||
if edge_key in seen_edges:
|
|
||||||
continue
|
|
||||||
seen_edges.add(edge_key)
|
|
||||||
|
|
||||||
query = (
|
|
||||||
f"MATCH (p:{head_label} {{name: '{head}', document_id: '{self.document_id}'}}), "
|
|
||||||
f"(q:{tail_label} {{name: '{tail}', document_id: '{self.document_id}'}}) "
|
|
||||||
f"CREATE (p)-[r:{rel_type} {{name: '{rel_name}'}}]->(q)"
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
self.g.run(query)
|
|
||||||
count += 1
|
|
||||||
logger.debug(f"创建关系: {head} -[{rel_type}]-> {tail} (document_id: {self.document_id})")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"创建关系失败: {query}, 错误: {str(e)}")
|
|
||||||
logger.info(f"创建 {rel_type} 关系: {count}/{total} 条")
|
|
||||||
return count
|
|
||||||
|
|
||||||
def create_graphnodes(self):
|
|
||||||
"""创建所有节点"""
|
|
||||||
nodes_by_label, _, _ = self.read_nodes()
|
|
||||||
total = 0
|
|
||||||
for label, nodes in nodes_by_label.items():
|
|
||||||
total += self.create_node(label, nodes)
|
|
||||||
logger.info(f"总计创建节点: {total} 个")
|
|
||||||
return total
|
|
||||||
|
|
||||||
def create_graphrels(self):
|
|
||||||
"""创建所有关系"""
|
|
||||||
_, relations_by_type, _ = self.read_nodes()
|
|
||||||
total = 0
|
|
||||||
for rel_type, relations in relations_by_type.items():
|
|
||||||
total += self.create_relationship(rel_type, relations)
|
|
||||||
logger.info(f"总计创建关系: {total} 条")
|
|
||||||
return total
|
|
||||||
|
|
||||||
def export_data(self):
|
|
||||||
"""导出节点到文件,包含 document_id"""
|
|
||||||
nodes_by_label, _, _ = self.read_nodes()
|
|
||||||
os.makedirs('dict', exist_ok=True)
|
|
||||||
for label, nodes in nodes_by_label.items():
|
|
||||||
with open(f'dict/{label.lower()}.txt', 'w', encoding='utf-8') as f:
|
|
||||||
f.write('\n'.join(f"{name}\t{self.document_id}" for name in sorted(nodes)))
|
|
||||||
logger.info(f"导出 {label} 节点到 dict/{label.lower()}.txt: {len(nodes)} 个")
|
|
||||||
return
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
data_path = '/share/wangmeihua/rag/triples/26911c68-9107-4bb4-8f31-ff776991a119_testuser2.txt'
|
|
||||||
handler = KnowledgeGraph(data_path)
|
|
||||||
logger.info("Step 1: 导入图谱节点中")
|
|
||||||
handler.create_graphnodes()
|
|
||||||
logger.info("Step 2: 导入图谱边中")
|
|
||||||
handler.create_graphrels()
|
|
||||||
logger.info("Step 3: 导出数据")
|
|
||||||
handler.export_data()
|
|
||||||
201
rag/query.py
201
rag/query.py
@ -1,201 +0,0 @@
|
|||||||
import os
|
|
||||||
import yaml
|
|
||||||
import logging
|
|
||||||
from typing import List, Dict
|
|
||||||
from pymilvus import connections, Collection, utility
|
|
||||||
from langchain_huggingface import HuggingFaceEmbeddings
|
|
||||||
from vector import initialize_milvus_connection, cleanup_milvus_connection
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
MILVUS_DB_PATH = config['database']['milvus_db_path']
|
|
||||||
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
|
|
||||||
except Exception as e:
|
|
||||||
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"无法加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
logger.handlers.clear() # 清除现有处理器,避免重复
|
|
||||||
logger.propagate = False # 禁用传播到父级
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
|
|
||||||
file_handler.setFormatter(formatter)
|
|
||||||
stream_handler = logging.StreamHandler()
|
|
||||||
stream_handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(file_handler)
|
|
||||||
logger.addHandler(stream_handler)
|
|
||||||
|
|
||||||
def search_query(query: str, userid: str, db_type: str, file_paths: List[str], limit: int = 5, offset: int = 0) -> List[Dict]:
|
|
||||||
"""
|
|
||||||
根据用户输入的查询文本,在指定 db_type 的知识库中搜索与 userid 相关的指定文档。
|
|
||||||
|
|
||||||
参数:
|
|
||||||
query (str): 用户输入的查询文本
|
|
||||||
userid (str): 用户ID,用于过滤
|
|
||||||
db_type (str): 数据库类型(例如 'textdb')
|
|
||||||
file_paths (List[str]): 文档路径列表(支持1到多个文件)
|
|
||||||
limit (int): 返回的最大结果数,默认为 10
|
|
||||||
offset (int): 偏移量,用于分页,默认为 0
|
|
||||||
|
|
||||||
返回:
|
|
||||||
List[Dict]: 搜索结果,每个元素为包含 text、distance 和 metadata 的字典
|
|
||||||
|
|
||||||
异常:
|
|
||||||
ValueError: 参数无效
|
|
||||||
RuntimeError: 模型加载或 Milvus 操作失败
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# 参数验证
|
|
||||||
if not query:
|
|
||||||
raise ValueError("查询文本不能为空")
|
|
||||||
if not userid or not db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能为空")
|
|
||||||
if "_" in userid or "_" in db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能包含下划线")
|
|
||||||
if len(userid) > 100 or len(db_type) > 100:
|
|
||||||
raise ValueError("userid 或 db_type 的长度超出限制")
|
|
||||||
if limit <= 0 or limit > 16384:
|
|
||||||
raise ValueError("limit 必须在 1 到 16384 之间")
|
|
||||||
if offset < 0:
|
|
||||||
raise ValueError("offset 不能为负数")
|
|
||||||
if limit + offset > 16384:
|
|
||||||
raise ValueError("limit + offset 不能超过 16384")
|
|
||||||
if not file_paths:
|
|
||||||
raise ValueError("file_paths 不能为空")
|
|
||||||
for file_path in file_paths:
|
|
||||||
if not isinstance(file_path, str):
|
|
||||||
raise ValueError(f"file_path 必须是字符串: {file_path}")
|
|
||||||
if len(os.path.basename(file_path)) > 255:
|
|
||||||
raise ValueError(f"文件名长度超出 255 个字符: {file_path}")
|
|
||||||
if "_" in os.path.basename(file_path):
|
|
||||||
raise ValueError(f"文件名 {file_path} 不能包含下划线")
|
|
||||||
|
|
||||||
# 初始化嵌入模型
|
|
||||||
model_path = TEXT_EMBEDDING_MODEL
|
|
||||||
if not os.path.exists(model_path):
|
|
||||||
raise ValueError(f"模型路径 {model_path} 不存在")
|
|
||||||
|
|
||||||
embedding = HuggingFaceEmbeddings(
|
|
||||||
model_name=model_path,
|
|
||||||
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
|
||||||
encode_kwargs={'normalize_embeddings': True}
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
test_vector = embedding.embed_query("test")
|
|
||||||
if len(test_vector) != 1024:
|
|
||||||
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
|
|
||||||
logger.debug("嵌入模型加载成功")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
|
|
||||||
# 将查询转换为向量
|
|
||||||
query_vector = embedding.embed_query(query)
|
|
||||||
logger.debug(f"查询向量维度: {len(query_vector)}")
|
|
||||||
|
|
||||||
# 连接到 Milvus
|
|
||||||
initialize_milvus_connection()
|
|
||||||
|
|
||||||
# 检查集合是否存在
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
return []
|
|
||||||
|
|
||||||
# 加载集合
|
|
||||||
try:
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
logger.debug(f"加载集合: {collection_name}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载集合 {collection_name} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载集合失败: {str(e)}")
|
|
||||||
|
|
||||||
# 构造搜索参数
|
|
||||||
search_params = {
|
|
||||||
"metric_type": "COSINE", # 与 vector.py 一致
|
|
||||||
"params": {"nprobe": 10} # 优化搜索性能
|
|
||||||
}
|
|
||||||
|
|
||||||
# 构造过滤表达式,限制在指定文件
|
|
||||||
filenames = [os.path.basename(file_path) for file_path in file_paths]
|
|
||||||
filename_expr = " or ".join([f"filename == '{filename}'" for filename in filenames])
|
|
||||||
expr = f"userid == '{userid}' and ({filename_expr})"
|
|
||||||
logger.debug(f"搜索参数: {search_params}, 表达式: {expr}, limit: {limit}, offset: {offset}")
|
|
||||||
|
|
||||||
# 执行搜索
|
|
||||||
try:
|
|
||||||
results = collection.search(
|
|
||||||
data=[query_vector],
|
|
||||||
anns_field="vector",
|
|
||||||
param=search_params,
|
|
||||||
limit=limit,
|
|
||||||
expr=expr,
|
|
||||||
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
offset=offset
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"搜索失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"搜索失败: {str(e)}")
|
|
||||||
|
|
||||||
# 处理搜索结果
|
|
||||||
search_results = []
|
|
||||||
for hits in results:
|
|
||||||
for hit in hits:
|
|
||||||
metadata = {
|
|
||||||
"userid": hit.entity.get("userid"),
|
|
||||||
"document_id": hit.entity.get("document_id"),
|
|
||||||
"filename": hit.entity.get("filename"),
|
|
||||||
"file_path": hit.entity.get("file_path"),
|
|
||||||
"upload_time": hit.entity.get("upload_time"),
|
|
||||||
"file_type": hit.entity.get("file_type")
|
|
||||||
}
|
|
||||||
result = {
|
|
||||||
"text": hit.entity.get("text"),
|
|
||||||
"distance": hit.distance,
|
|
||||||
"metadata": metadata
|
|
||||||
}
|
|
||||||
search_results.append(result)
|
|
||||||
logger.debug(f"命中: text: {result['text'][:200]}..., 距离: {hit.distance}, 元数据: {metadata}")
|
|
||||||
|
|
||||||
logger.debug(f"搜索完成,返回 {len(search_results)} 条结果")
|
|
||||||
return search_results
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"搜索失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
raise
|
|
||||||
finally:
|
|
||||||
cleanup_milvus_connection()
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# 测试代码
|
|
||||||
query = "知识图谱的知识融合是什么?"
|
|
||||||
userid = "testuser2"
|
|
||||||
db_type = "textdb"
|
|
||||||
file_paths = [
|
|
||||||
"/share/wangmeihua/rag/data/test.docx",
|
|
||||||
"/share/wangmeihua/rag/data/test.txt"
|
|
||||||
]
|
|
||||||
limit = 5
|
|
||||||
offset = 0
|
|
||||||
|
|
||||||
try:
|
|
||||||
results = search_query(query, userid, db_type, file_paths, limit, offset)
|
|
||||||
print(f"搜索结果 ({len(results)} 条):")
|
|
||||||
for idx, result in enumerate(results, 1):
|
|
||||||
print(f"结果 {idx}:")
|
|
||||||
print(f"内容: {result['text'][:200]}...")
|
|
||||||
print(f"距离: {result['distance']}")
|
|
||||||
print(f"元数据: {result['metadata']}")
|
|
||||||
print("-" * 50)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"搜索失败: {str(e)}")
|
|
||||||
@ -1,80 +0,0 @@
|
|||||||
import os
|
|
||||||
import yaml
|
|
||||||
import logging
|
|
||||||
from typing import List, Dict
|
|
||||||
from pymilvus.model.reranker import BGERerankFunction
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
logger.handlers.clear() # 清除现有处理器
|
|
||||||
logger.propagate = False # 禁用传播
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
|
|
||||||
file_handler.setFormatter(formatter)
|
|
||||||
stream_handler = logging.StreamHandler()
|
|
||||||
stream_handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(file_handler)
|
|
||||||
logger.addHandler(stream_handler)
|
|
||||||
|
|
||||||
def rerank_results(query: str, results: List[Dict], top_k: int = 10) -> List[Dict]:
|
|
||||||
"""
|
|
||||||
使用 BGE Reranker 模型对查询和文本块进行重排序。
|
|
||||||
|
|
||||||
参数:
|
|
||||||
query (str): 查询文本
|
|
||||||
results (List[Dict]): 包含 text、distance、source 和 metadata 的结果列表
|
|
||||||
top_k (int): 返回的最大结果数,默认为 10
|
|
||||||
|
|
||||||
返回:
|
|
||||||
List[Dict]: 重排序后的结果列表,包含 text、distance、source、metadata 和 rerank_score
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# 初始化 BGE Reranker
|
|
||||||
bge_rf = BGERerankFunction(
|
|
||||||
model_name="/share/models/BAAI/bge-reranker-v2-m3",
|
|
||||||
device="cuda:0" if torch.cuda.is_available() else "cpu"
|
|
||||||
)
|
|
||||||
logger.debug(f"BGE Reranker 初始化成功,模型路径: /share/models/BAAI/bge-reranker-v2-m3, 设备: {'cuda:0' if torch.cuda.is_available() else 'cpu'}")
|
|
||||||
|
|
||||||
# 提取文本块
|
|
||||||
documents = [result['text'] for result in results]
|
|
||||||
if not documents:
|
|
||||||
logger.warning("无文本块可重排序")
|
|
||||||
return results
|
|
||||||
|
|
||||||
# 重排序
|
|
||||||
rerank_results = bge_rf(
|
|
||||||
query=query,
|
|
||||||
documents=documents,
|
|
||||||
top_k=min(top_k, len(documents))
|
|
||||||
)
|
|
||||||
|
|
||||||
# 构建重排序结果
|
|
||||||
reranked = []
|
|
||||||
for result in rerank_results:
|
|
||||||
original_result = results[result.index].copy()
|
|
||||||
original_result['rerank_score'] = result.score
|
|
||||||
reranked.append(original_result)
|
|
||||||
logger.debug(f"重排序结果: text={result.text[:200]}..., rerank_score={result.score:.6f}, source={original_result['source']}")
|
|
||||||
|
|
||||||
logger.info(f"重排序返回 {len(reranked)} 条结果")
|
|
||||||
return reranked
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"重排序失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
# 回退到原始结果
|
|
||||||
return results
|
|
||||||
@ -1,363 +0,0 @@
|
|||||||
import os
|
|
||||||
import yaml
|
|
||||||
import logging
|
|
||||||
from typing import List, Dict
|
|
||||||
from pymilvus import connections, Collection, utility
|
|
||||||
from langchain_huggingface import HuggingFaceEmbeddings
|
|
||||||
import numpy as np
|
|
||||||
from scipy.spatial.distance import cosine
|
|
||||||
from ltp import LTP
|
|
||||||
from vector import initialize_milvus_connection, cleanup_milvus_connection
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
MILVUS_DB_PATH = config['database']['milvus_db_path']
|
|
||||||
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
|
|
||||||
except Exception as e:
|
|
||||||
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载配置文件失败: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
logger.handlers.clear() # 清理现有处理器,避免重复
|
|
||||||
logger.propagate = False # 禁用传播到父级
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
file_handler = logging.FileHandler(config['logging']['file'], encoding='utf-8')
|
|
||||||
file_handler.setFormatter(formatter)
|
|
||||||
stream_handler = logging.StreamHandler()
|
|
||||||
stream_handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(file_handler)
|
|
||||||
logger.addHandler(stream_handler)
|
|
||||||
|
|
||||||
# 三元组保存路径
|
|
||||||
TRIPLES_OUTPUT_DIR = '/share/wangmeihua/rag/triples'
|
|
||||||
|
|
||||||
# 初始化嵌入模型
|
|
||||||
embedding = HuggingFaceEmbeddings(
|
|
||||||
model_name=TEXT_EMBEDDING_MODEL,
|
|
||||||
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
|
||||||
encode_kwargs={'normalize_embeddings': True}
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
test_vector = embedding.embed_query("test")
|
|
||||||
if len(test_vector) != 1024:
|
|
||||||
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
|
|
||||||
logger.debug("嵌入模型加载成功")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
|
|
||||||
# 初始化 LTP 模型
|
|
||||||
try:
|
|
||||||
model_path = "/share/models/LTP/small"
|
|
||||||
if not os.path.isdir(model_path):
|
|
||||||
logger.warning(f"本地模型路径 {model_path} 不存在,尝试使用 Hugging Face 模型 'hit-scir/ltp-small'")
|
|
||||||
model_path = "hit-scir/ltp-small"
|
|
||||||
ltp = LTP(pretrained_model_name_or_path=model_path)
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
ltp.to("cuda")
|
|
||||||
logger.debug("LTP 模型加载成功")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载 LTP 模型失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载 LTP 模型失败: {str(e)}")
|
|
||||||
|
|
||||||
def extract_entities(query: str) -> List[str]:
|
|
||||||
"""
|
|
||||||
从查询文本中抽取实体,包括:
|
|
||||||
- LTP NER 识别的实体(所有类型)。
|
|
||||||
- LTP POS 标注为名词('n')的词。
|
|
||||||
- LTP POS 标注为动词('v')的词。
|
|
||||||
- 连续名词合并(如 '苹果 公司' -> '苹果公司'),移除子词。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if not query:
|
|
||||||
raise ValueError("查询文本不能为空")
|
|
||||||
|
|
||||||
# 使用 LTP pipeline 获取分词、词性、NER 结果
|
|
||||||
result = ltp.pipeline([query], tasks=["cws", "pos", "ner"])
|
|
||||||
words = result.cws[0]
|
|
||||||
pos_list = result.pos[0]
|
|
||||||
ner = result.ner[0]
|
|
||||||
|
|
||||||
entities = []
|
|
||||||
subword_set = set() # 记录连续名词的子词
|
|
||||||
|
|
||||||
# 提取 1:NER 实体(所有类型)
|
|
||||||
logger.debug(f"NER 结果: {ner}")
|
|
||||||
for entity_type, entity, start, end in ner:
|
|
||||||
entities.append(entity)
|
|
||||||
|
|
||||||
# 提取 2:合并连续名词
|
|
||||||
combined = ""
|
|
||||||
combined_words = [] # 记录当前连续名词的单词
|
|
||||||
for i in range(len(words)):
|
|
||||||
if pos_list[i] == 'n':
|
|
||||||
combined += words[i]
|
|
||||||
combined_words.append(words[i])
|
|
||||||
if i + 1 < len(words) and pos_list[i + 1] == 'n':
|
|
||||||
continue
|
|
||||||
if combined:
|
|
||||||
entities.append(combined)
|
|
||||||
subword_set.update(combined_words)
|
|
||||||
logger.debug(f"合并连续名词: {combined}, 子词: {combined_words}")
|
|
||||||
combined = ""
|
|
||||||
combined_words = []
|
|
||||||
else:
|
|
||||||
combined = ""
|
|
||||||
combined_words = []
|
|
||||||
logger.debug(f"连续名词子词集合: {subword_set}")
|
|
||||||
|
|
||||||
# 提取 3:POS 名词('n'),排除子词
|
|
||||||
for word, pos in zip(words, pos_list):
|
|
||||||
if pos == 'n' and word not in subword_set:
|
|
||||||
entities.append(word)
|
|
||||||
|
|
||||||
# 提取 4:POS 动词('v')
|
|
||||||
for word, pos in zip(words, pos_list):
|
|
||||||
if pos == 'v':
|
|
||||||
entities.append(word)
|
|
||||||
|
|
||||||
# 去重
|
|
||||||
unique_entities = list(dict.fromkeys(entities))
|
|
||||||
logger.info(f"从查询中提取到 {len(unique_entities)} 个唯一实体: {unique_entities}")
|
|
||||||
return unique_entities
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"实体抽取失败: {str(e)}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
def load_triplets_from_file(triplet_file: str) -> List[Dict]:
|
|
||||||
"""从三元组文件中加载"""
|
|
||||||
triplets = []
|
|
||||||
try:
|
|
||||||
if not os.path.exists(triplet_file):
|
|
||||||
logger.warning(f"三元组文件 {triplet_file} 不存在")
|
|
||||||
return []
|
|
||||||
|
|
||||||
with open(triplet_file, 'r', encoding='utf-8') as f:
|
|
||||||
for line in f:
|
|
||||||
if line.strip():
|
|
||||||
parts = line.strip().split('\t')
|
|
||||||
if len(parts) >= 5:
|
|
||||||
head, relation, tail, head_type, tail_type = parts[:5]
|
|
||||||
triplets.append({
|
|
||||||
'head': head,
|
|
||||||
'head_type': head_type,
|
|
||||||
'type': relation,
|
|
||||||
'tail': tail,
|
|
||||||
'tail_type': tail_type
|
|
||||||
})
|
|
||||||
logger.debug(f"从 {triplet_file} 加载 {len(triplets)} 个三元组")
|
|
||||||
return triplets
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载三元组文件 {triplet_file} 失败: {str(e)}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
def match_triplets(query: str, query_entities: List[str], userid: str, document_id: str) -> List[Dict]:
|
|
||||||
"""
|
|
||||||
匹配查询实体与文档三元组,使用语义嵌入:
|
|
||||||
- 初始匹配:实体与 head 或 tail 相似度 ≥ 0.8。
|
|
||||||
- 返回匹配的三元组。
|
|
||||||
"""
|
|
||||||
matched_triplets = []
|
|
||||||
ENTITY_SIMILARITY_THRESHOLD = 0.8 # 实体与 head/tail 相似度阈值
|
|
||||||
|
|
||||||
try:
|
|
||||||
# 加载三元组
|
|
||||||
triplet_file = os.path.join(TRIPLES_OUTPUT_DIR, f"{document_id}_{userid}.txt")
|
|
||||||
doc_triplets = load_triplets_from_file(triplet_file)
|
|
||||||
if not doc_triplets:
|
|
||||||
logger.debug(f"文档 document_id={document_id} 无三元组")
|
|
||||||
return []
|
|
||||||
|
|
||||||
# 缓存查询实体嵌入
|
|
||||||
entity_vectors = {entity: embedding.embed_query(entity) for entity in query_entities}
|
|
||||||
|
|
||||||
# 初始匹配
|
|
||||||
for entity in query_entities:
|
|
||||||
entity_vec = entity_vectors[entity]
|
|
||||||
for d_triplet in doc_triplets:
|
|
||||||
d_head_vec = embedding.embed_query(d_triplet['head'])
|
|
||||||
d_tail_vec = embedding.embed_query(d_triplet['tail'])
|
|
||||||
head_similarity = 1 - cosine(entity_vec, d_head_vec)
|
|
||||||
tail_similarity = 1 - cosine(entity_vec, d_tail_vec)
|
|
||||||
|
|
||||||
if head_similarity >= ENTITY_SIMILARITY_THRESHOLD or tail_similarity >= ENTITY_SIMILARITY_THRESHOLD:
|
|
||||||
matched_triplets.append(d_triplet)
|
|
||||||
logger.debug(f"匹配三元组: {d_triplet['head']} - {d_triplet['type']} - {d_triplet['tail']} "
|
|
||||||
f"(entity={entity}, head_sim={head_similarity:.2f}, tail_sim={tail_similarity:.2f})")
|
|
||||||
|
|
||||||
# 去重
|
|
||||||
unique_matched = []
|
|
||||||
seen = set()
|
|
||||||
for t in matched_triplets:
|
|
||||||
identifier = (t['head'].lower(), t['type'].lower(), t['tail'].lower())
|
|
||||||
if identifier not in seen:
|
|
||||||
seen.add(identifier)
|
|
||||||
unique_matched.append(t)
|
|
||||||
|
|
||||||
logger.info(f"找到 {len(unique_matched)} 个匹配的三元组")
|
|
||||||
return unique_matched
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"匹配三元组失败: {str(e)}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
def searchquery(query: str, userid: str, db_type: str, file_paths: List[str], limit: int = 5, offset: int = 0) -> List[Dict]:
|
|
||||||
"""
|
|
||||||
根据查询抽取实体,匹配指定文档的三元组,并在 Milvus 中搜索相关文档片段。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if not query or not userid or not db_type or not file_paths:
|
|
||||||
raise ValueError("query、userid、db_type 和 file_paths 不能为空")
|
|
||||||
if "_" in userid or "_" in db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能包含下划线")
|
|
||||||
if len(userid) > 100 or len(db_type) > 100:
|
|
||||||
raise ValueError("userid 或 db_type 的长度超出限制")
|
|
||||||
if limit <= 0 or limit > 16384:
|
|
||||||
raise ValueError("limit 必须在 1 到 16384 之间")
|
|
||||||
if offset < 0:
|
|
||||||
raise ValueError("offset 不能为负数")
|
|
||||||
if limit + offset > 16384:
|
|
||||||
raise ValueError("limit + offset 不能超过 16384")
|
|
||||||
|
|
||||||
initialize_milvus_connection()
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
return []
|
|
||||||
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
|
|
||||||
documents = []
|
|
||||||
for file_path in file_paths:
|
|
||||||
filename = os.path.basename(file_path)
|
|
||||||
results = collection.query(
|
|
||||||
expr=f"userid == '{userid}' and filename == '{filename}'",
|
|
||||||
output_fields=["document_id", "filename"],
|
|
||||||
limit=1
|
|
||||||
)
|
|
||||||
if not results:
|
|
||||||
logger.warning(f"未找到 userid {userid} 和 filename {filename} 对应的文档")
|
|
||||||
continue
|
|
||||||
documents.append(results[0])
|
|
||||||
|
|
||||||
if not documents:
|
|
||||||
logger.warning("没有找到任何有效文档")
|
|
||||||
return []
|
|
||||||
|
|
||||||
logger.info(f"找到 {len(documents)} 个文档: {[doc['filename'] for doc in documents]}")
|
|
||||||
|
|
||||||
query_entities = extract_entities(query)
|
|
||||||
if not query_entities:
|
|
||||||
logger.warning("未从查询中提取到实体")
|
|
||||||
return []
|
|
||||||
|
|
||||||
search_results = []
|
|
||||||
for doc in documents:
|
|
||||||
document_id = doc["document_id"]
|
|
||||||
filename = doc["filename"]
|
|
||||||
logger.debug(f"处理文档: document_id={document_id}, filename={filename}")
|
|
||||||
|
|
||||||
matched_triplets = match_triplets(query, query_entities, userid, document_id)
|
|
||||||
if not matched_triplets:
|
|
||||||
logger.debug(f"文档 document_id={document_id} 未找到匹配的三元组")
|
|
||||||
continue
|
|
||||||
|
|
||||||
for triplet in matched_triplets:
|
|
||||||
head = triplet['head']
|
|
||||||
type = triplet['type']
|
|
||||||
tail = triplet['tail']
|
|
||||||
if not head or not type or not tail:
|
|
||||||
logger.debug(f"无效三元组: head={head}, type={type}, tail={tail}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
triplet_text = f"{head} {type} {tail}"
|
|
||||||
logger.debug(f"搜索三元组: {triplet_text} (文档: {filename})")
|
|
||||||
try:
|
|
||||||
search_params = {"metric_type": "COSINE", "params": {"nprobe": 10}}
|
|
||||||
query_vector = embedding.embed_query(triplet_text)
|
|
||||||
expr = f"userid == '{userid}' and filename == '{filename}' and text like '%{head}%{tail}%'"
|
|
||||||
logger.debug(f"搜索表达式: {expr}")
|
|
||||||
|
|
||||||
results = collection.search(
|
|
||||||
data=[query_vector],
|
|
||||||
anns_field="vector",
|
|
||||||
param=search_params,
|
|
||||||
limit=limit,
|
|
||||||
expr=expr,
|
|
||||||
output_fields=["text", "userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
offset=offset
|
|
||||||
)
|
|
||||||
|
|
||||||
for hits in results:
|
|
||||||
for hit in hits:
|
|
||||||
metadata = {
|
|
||||||
"userid": hit.entity.get("userid"),
|
|
||||||
"document_id": hit.entity.get("document_id"),
|
|
||||||
"filename": hit.entity.get("filename"),
|
|
||||||
"file_path": hit.entity.get("file_path"),
|
|
||||||
"upload_time": hit.entity.get("upload_time"),
|
|
||||||
"file_type": hit.entity.get("file_type")
|
|
||||||
}
|
|
||||||
result = {
|
|
||||||
"text": hit.entity.get("text"),
|
|
||||||
"distance": hit.distance,
|
|
||||||
"metadata": metadata
|
|
||||||
}
|
|
||||||
search_results.append(result)
|
|
||||||
logger.debug(f"命中: text: {result['text'][:200]}..., 距离: {hit.distance}, 元数据: {metadata}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"三元组 {triplet_text} 在文档 {filename} 搜索失败: {str(e)}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
unique_results = []
|
|
||||||
seen_texts = set()
|
|
||||||
for result in sorted(search_results, key=lambda x: x['distance'], reverse=True):
|
|
||||||
if result['text'] not in seen_texts:
|
|
||||||
unique_results.append(result)
|
|
||||||
seen_texts.add(result['text'])
|
|
||||||
if len(unique_results) >= limit:
|
|
||||||
break
|
|
||||||
|
|
||||||
logger.info(f"返回 {len(unique_results)} 条唯一结果")
|
|
||||||
return unique_results
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"搜索失败: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
logger.debug(traceback.format_exc())
|
|
||||||
return []
|
|
||||||
finally:
|
|
||||||
cleanup_milvus_connection()
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
query = "什么是知识图谱的知识抽取?"
|
|
||||||
userid = "testuser1"
|
|
||||||
db_type = "textdb"
|
|
||||||
file_paths = [
|
|
||||||
"/share/wangmeihua/rag/data/test.docx",
|
|
||||||
"/share/wangmeihua/rag/data/zongshu.pdf",
|
|
||||||
"/share/wangmeihua/rag/data/qianru.pdf"
|
|
||||||
]
|
|
||||||
limit = 5
|
|
||||||
offset = 0
|
|
||||||
|
|
||||||
try:
|
|
||||||
results = searchquery(query, userid, db_type, file_paths, limit, offset)
|
|
||||||
print(f"搜索结果 ({len(results)} 条):")
|
|
||||||
for idx, result in enumerate(results, 1):
|
|
||||||
print(f"结果 {idx}:")
|
|
||||||
print(f"内容: {result['text'][:200]}...")
|
|
||||||
print(f"距离: {result['distance']}")
|
|
||||||
print(f"元数据: {result['metadata']}")
|
|
||||||
print("-" * 50)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"搜索失败: {str(e)}")
|
|
||||||
@ -1,9 +0,0 @@
|
|||||||
from py2neo import Graph,Node,Relationship,NodeMatcher
|
|
||||||
|
|
||||||
username = 'neo4j'
|
|
||||||
password = '261229..wmh'
|
|
||||||
auth = (username, password)
|
|
||||||
graph=Graph("bolt://10.18.34.18:7687", auth = auth)
|
|
||||||
|
|
||||||
book_node=Node('经名',name='十三经')
|
|
||||||
graph.create(book_node)
|
|
||||||
539
rag/vector.py
539
rag/vector.py
@ -1,539 +0,0 @@
|
|||||||
import os
|
|
||||||
import uuid
|
|
||||||
import json
|
|
||||||
import yaml
|
|
||||||
from datetime import datetime
|
|
||||||
from typing import List, Dict, Optional
|
|
||||||
from pymilvus import connections, utility, Collection, CollectionSchema, FieldSchema, DataType
|
|
||||||
from langchain_milvus import Milvus
|
|
||||||
from langchain_huggingface import HuggingFaceEmbeddings
|
|
||||||
from langchain_core.documents import Document
|
|
||||||
import torch
|
|
||||||
import logging
|
|
||||||
import time
|
|
||||||
|
|
||||||
# 加载配置文件
|
|
||||||
CONFIG_PATH = os.getenv('CONFIG_PATH', '/share/wangmeihua/rag/conf/milvusconfig.yaml')
|
|
||||||
try:
|
|
||||||
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
|
||||||
config = yaml.safe_load(f)
|
|
||||||
MILVUS_DB_PATH = config['database']['milvus_db_path']
|
|
||||||
TEXT_EMBEDDING_MODEL = config['models']['text_embedding_model']
|
|
||||||
except Exception as e:
|
|
||||||
print(f"加载配置文件 {CONFIG_PATH} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"无法加载配置文件: {str(e)}")
|
|
||||||
|
|
||||||
# 配置日志
|
|
||||||
logger = logging.getLogger(config['logging']['name'])
|
|
||||||
logger.setLevel(getattr(logging, config['logging']['level'], logging.DEBUG))
|
|
||||||
os.makedirs(os.path.dirname(config['logging']['file']), exist_ok=True)
|
|
||||||
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
||||||
for handler in (logging.FileHandler(config['logging']['file'], encoding='utf-8'), logging.StreamHandler()):
|
|
||||||
handler.setFormatter(formatter)
|
|
||||||
logger.addHandler(handler)
|
|
||||||
|
|
||||||
def ensure_milvus_directory() -> None:
|
|
||||||
"""确保 Milvus 数据库目录存在"""
|
|
||||||
db_dir = os.path.dirname(MILVUS_DB_PATH)
|
|
||||||
if not os.path.exists(db_dir):
|
|
||||||
os.makedirs(db_dir, exist_ok=True)
|
|
||||||
logger.debug(f"创建 Milvus 目录: {db_dir}")
|
|
||||||
if not os.access(db_dir, os.W_OK):
|
|
||||||
raise RuntimeError(f"Milvus 目录 {db_dir} 不可写")
|
|
||||||
|
|
||||||
def initialize_milvus_connection() -> None:
|
|
||||||
"""初始化 Milvus 连接,确保单一连接"""
|
|
||||||
try:
|
|
||||||
if not connections.has_connection("default"):
|
|
||||||
connections.connect("default", uri=MILVUS_DB_PATH)
|
|
||||||
logger.debug(f"已连接到 Milvus Lite,路径: {MILVUS_DB_PATH}")
|
|
||||||
else:
|
|
||||||
logger.debug("已存在 Milvus 连接,跳过重复连接")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"连接 Milvus 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"连接 Milvus 失败: {str(e)}")
|
|
||||||
|
|
||||||
def cleanup_milvus_connection() -> None:
|
|
||||||
"""清理 Milvus 连接,确保资源释放"""
|
|
||||||
try:
|
|
||||||
if connections.has_connection("default"):
|
|
||||||
connections.disconnect("default")
|
|
||||||
logger.debug("已断开 Milvus 连接")
|
|
||||||
time.sleep(3)
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"断开 Milvus 连接失败: {str(e)}")
|
|
||||||
|
|
||||||
def get_vector_db(userid: str, db_type: str, documents: List[Document]) -> Milvus:
|
|
||||||
"""
|
|
||||||
初始化或访问 Milvus Lite 向量数据库集合,按 db_type 组织,利用 userid 区分用户,document_id 区分文档,并插入文档。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# 参数验证
|
|
||||||
if not userid or not db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能为空")
|
|
||||||
if "_" in userid or "_" in db_type:
|
|
||||||
raise ValueError("userid 和 db_type 不能包含下划线")
|
|
||||||
if len(userid) > 100 or len(db_type) > 100:
|
|
||||||
raise ValueError("userid 和 db_type 的长度应小于 100")
|
|
||||||
if not documents or not all(isinstance(doc, Document) for doc in documents):
|
|
||||||
raise ValueError("documents 不能为空且必须是 Document 对象列表")
|
|
||||||
required_fields = ["userid", "document_id", "filename", "file_path", "upload_time", "file_type"]
|
|
||||||
for doc in documents:
|
|
||||||
if not all(field in doc.metadata and doc.metadata[field] for field in required_fields):
|
|
||||||
raise ValueError(f"文档元数据缺少必需字段或字段值为空: {doc.metadata}")
|
|
||||||
if doc.metadata["userid"] != userid:
|
|
||||||
raise ValueError(f"文档元数据的 userid {doc.metadata['userid']} 与输入 userid {userid} 不一致")
|
|
||||||
|
|
||||||
ensure_milvus_directory()
|
|
||||||
initialize_milvus_connection()
|
|
||||||
|
|
||||||
# 初始化嵌入模型
|
|
||||||
model_path = TEXT_EMBEDDING_MODEL
|
|
||||||
if not os.path.exists(model_path):
|
|
||||||
raise ValueError(f"模型路径 {model_path} 不存在")
|
|
||||||
|
|
||||||
embedding = HuggingFaceEmbeddings(
|
|
||||||
model_name=model_path,
|
|
||||||
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
|
||||||
encode_kwargs={'normalize_embeddings': True}
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
test_vector = embedding.embed_query("test")
|
|
||||||
if len(test_vector) != 1024:
|
|
||||||
raise ValueError(f"嵌入模型输出维度 {len(test_vector)} 不匹配预期 1024")
|
|
||||||
logger.debug(f"嵌入模型加载成功,输出维度: {len(test_vector)}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"嵌入模型加载失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载模型失败: {str(e)}")
|
|
||||||
|
|
||||||
# 集合名称
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if len(collection_name) > 255:
|
|
||||||
raise ValueError(f"集合名称 {collection_name} 超过 255 个字符")
|
|
||||||
logger.debug(f"集合名称: {collection_name}")
|
|
||||||
|
|
||||||
# 定义 schema,包含所有固定字段
|
|
||||||
fields = [
|
|
||||||
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, max_length=36, auto_id=True),
|
|
||||||
FieldSchema(name="userid", dtype=DataType.VARCHAR, max_length=100),
|
|
||||||
FieldSchema(name="document_id", dtype=DataType.VARCHAR, max_length=36),
|
|
||||||
FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=65535),
|
|
||||||
FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024),
|
|
||||||
FieldSchema(name="filename", dtype=DataType.VARCHAR, max_length=255),
|
|
||||||
FieldSchema(name="file_path", dtype=DataType.VARCHAR, max_length=1024),
|
|
||||||
FieldSchema(name="upload_time", dtype=DataType.VARCHAR, max_length=64),
|
|
||||||
FieldSchema(name="file_type", dtype=DataType.VARCHAR, max_length=64),
|
|
||||||
]
|
|
||||||
schema = CollectionSchema(
|
|
||||||
fields=fields,
|
|
||||||
description=f"{db_type} 数据集合,跨用户使用,包含 document_id 和元数据字段",
|
|
||||||
auto_id=True,
|
|
||||||
primary_field="pk",
|
|
||||||
)
|
|
||||||
|
|
||||||
# 检查集合是否存在
|
|
||||||
if utility.has_collection(collection_name):
|
|
||||||
try:
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
existing_schema = collection.schema
|
|
||||||
expected_fields = {f.name for f in fields}
|
|
||||||
actual_fields = {f.name for f in existing_schema.fields}
|
|
||||||
vector_field = next((f for f in existing_schema.fields if f.name == "vector"), None)
|
|
||||||
|
|
||||||
schema_compatible = False
|
|
||||||
if expected_fields == actual_fields and vector_field is not None and vector_field.dtype == DataType.FLOAT_VECTOR:
|
|
||||||
dim = vector_field.params.get('dim', None) if hasattr(vector_field, 'params') and vector_field.params else None
|
|
||||||
schema_compatible = dim == 1024
|
|
||||||
logger.debug(f"检查集合 {collection_name} 的 schema: 字段匹配={expected_fields == actual_fields}, "
|
|
||||||
f"vector_field存在={vector_field is not None}, dtype={vector_field.dtype if vector_field else '无'}, "
|
|
||||||
f"dim={dim if dim is not None else '未定义'}")
|
|
||||||
if not schema_compatible:
|
|
||||||
logger.warning(f"集合 {collection_name} 的 schema 不兼容,原因: "
|
|
||||||
f"字段不匹配: {expected_fields.symmetric_difference(actual_fields) or '无'}, "
|
|
||||||
f"vector_field: {vector_field is not None}, "
|
|
||||||
f"dtype: {vector_field.dtype if vector_field else '无'}, "
|
|
||||||
f"dim: {vector_field.params.get('dim', '未定义') if vector_field and hasattr(vector_field, 'params') and vector_field.params else '未定义'}")
|
|
||||||
utility.drop_collection(collection_name)
|
|
||||||
else:
|
|
||||||
collection.load()
|
|
||||||
logger.debug(f"集合 {collection_name} 已存在并加载成功")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"加载集合 {collection_name} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"加载集合失败: {str(e)}")
|
|
||||||
|
|
||||||
# 创建新集合
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
try:
|
|
||||||
collection = Collection(collection_name, schema)
|
|
||||||
collection.create_index(
|
|
||||||
field_name="vector",
|
|
||||||
index_params={"index_type": "AUTOINDEX", "metric_type": "COSINE"}
|
|
||||||
)
|
|
||||||
collection.create_index(
|
|
||||||
field_name="userid",
|
|
||||||
index_params={"index_type": "INVERTED"}
|
|
||||||
)
|
|
||||||
collection.create_index(
|
|
||||||
field_name="document_id",
|
|
||||||
index_params={"index_type": "INVERTED"}
|
|
||||||
)
|
|
||||||
collection.create_index(
|
|
||||||
field_name="filename",
|
|
||||||
index_params={"index_type": "INVERTED"}
|
|
||||||
)
|
|
||||||
collection.create_index(
|
|
||||||
field_name="file_path",
|
|
||||||
index_params={"index_type": "INVERTED"}
|
|
||||||
)
|
|
||||||
collection.create_index(
|
|
||||||
field_name="upload_time",
|
|
||||||
index_params={"index_type": "INVERTED"}
|
|
||||||
)
|
|
||||||
collection.create_index(
|
|
||||||
field_name="file_type",
|
|
||||||
index_params={"index_type": "INVERTED"}
|
|
||||||
)
|
|
||||||
collection.load()
|
|
||||||
logger.debug(f"成功创建并加载集合: {collection_name}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"创建集合 {collection_name} 失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"创建集合失败: {str(e)}")
|
|
||||||
|
|
||||||
# 初始化 Milvus 向量存储
|
|
||||||
try:
|
|
||||||
vector_store = Milvus(
|
|
||||||
embedding_function=embedding,
|
|
||||||
collection_name=collection_name,
|
|
||||||
connection_args={"uri": MILVUS_DB_PATH},
|
|
||||||
drop_old=False,
|
|
||||||
auto_id=True,
|
|
||||||
primary_field="pk",
|
|
||||||
)
|
|
||||||
logger.debug(f"成功初始化 Milvus 向量存储: {collection_name}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"初始化 Milvus 向量存储失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"初始化向量存储失败: {str(e)}")
|
|
||||||
|
|
||||||
# 插入文档
|
|
||||||
try:
|
|
||||||
logger.debug(f"正在为 userid {userid} 插入 {len(documents)} 个文档到 {collection_name}")
|
|
||||||
for doc in documents:
|
|
||||||
logger.debug(f"插入文档元数据: {doc.metadata}")
|
|
||||||
vector_store.add_documents(documents=documents)
|
|
||||||
logger.debug(f"成功插入 {len(documents)} 个文档")
|
|
||||||
|
|
||||||
# 立即查询验证
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
results = collection.query(
|
|
||||||
expr=f"userid == '{userid}'",
|
|
||||||
output_fields=["pk", "text", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
limit=10
|
|
||||||
)
|
|
||||||
for result in results:
|
|
||||||
logger.debug(f"插入后查询结果: pk={result['pk']}, document_id={result['document_id']}, "
|
|
||||||
f"metadata={{'filename': '{result['filename']}', 'file_path': '{result['file_path']}', "
|
|
||||||
f"'upload_time': '{result['upload_time']}', 'file_type': '{result['file_type']}'}}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"插入文档失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"插入文档失败: {str(e)}")
|
|
||||||
|
|
||||||
return vector_store
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"初始化 Milvus 向量存储失败: {str(e)}")
|
|
||||||
raise
|
|
||||||
finally:
|
|
||||||
cleanup_milvus_connection()
|
|
||||||
|
|
||||||
def get_document_mapping(userid: str, db_type: str) -> Dict[str, Dict]:
|
|
||||||
"""
|
|
||||||
获取指定 userid 和 db_type 下的 document_id 与元数据的映射。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if not userid or "_" in userid:
|
|
||||||
raise ValueError("userid 不能为空且不能包含下划线")
|
|
||||||
if not db_type or "_" in db_type:
|
|
||||||
raise ValueError("db_type 不能为空且不能包含下划线")
|
|
||||||
|
|
||||||
initialize_milvus_connection()
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
return {}
|
|
||||||
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
|
|
||||||
results = collection.query(
|
|
||||||
expr=f"userid == '{userid}'",
|
|
||||||
output_fields=["userid", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
limit=100
|
|
||||||
)
|
|
||||||
mapping = {}
|
|
||||||
for result in results:
|
|
||||||
doc_id = result.get("document_id")
|
|
||||||
if doc_id:
|
|
||||||
mapping[doc_id] = {
|
|
||||||
"userid": result.get("userid", ""),
|
|
||||||
"filename": result.get("filename", ""),
|
|
||||||
"file_path": result.get("file_path", ""),
|
|
||||||
"upload_time": result.get("upload_time", ""),
|
|
||||||
"file_type": result.get("file_type", "")
|
|
||||||
}
|
|
||||||
logger.debug(f"document_id: {doc_id}, metadata: {mapping[doc_id]}")
|
|
||||||
|
|
||||||
logger.debug(f"找到 {len(mapping)} 个文档的映射")
|
|
||||||
return mapping
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"获取文档映射失败: {str(e)}")
|
|
||||||
raise RuntimeError(f"获取文档映射失败: {str(e)}")
|
|
||||||
|
|
||||||
def list_user_collections() -> Dict[str, Dict]:
|
|
||||||
"""
|
|
||||||
列出所有数据库类型(db_type)及其包含的用户(userid)与对应的文档(document_id)映射。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
ensure_milvus_directory()
|
|
||||||
initialize_milvus_connection()
|
|
||||||
collections = utility.list_collections()
|
|
||||||
|
|
||||||
db_types_with_data = {}
|
|
||||||
for col in collections:
|
|
||||||
if col.startswith("ragdb_"):
|
|
||||||
db_type = col[len("ragdb_"):]
|
|
||||||
logger.debug(f"处理集合: {col} (db_type: {db_type})")
|
|
||||||
|
|
||||||
collection = Collection(col)
|
|
||||||
collection.load()
|
|
||||||
|
|
||||||
batch_size = 1000
|
|
||||||
offset = 0
|
|
||||||
user_document_map = {}
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
results = collection.query(
|
|
||||||
expr="",
|
|
||||||
output_fields=["userid", "document_id"],
|
|
||||||
limit=batch_size,
|
|
||||||
offset=offset
|
|
||||||
)
|
|
||||||
if not results:
|
|
||||||
break
|
|
||||||
for result in results:
|
|
||||||
userid = result.get("userid")
|
|
||||||
doc_id = result.get("document_id")
|
|
||||||
if userid and doc_id:
|
|
||||||
if userid not in user_document_map:
|
|
||||||
user_document_map[userid] = set()
|
|
||||||
user_document_map[userid].add(doc_id)
|
|
||||||
offset += batch_size
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"查询集合 {col} 的用户和文档失败: {str(e)}")
|
|
||||||
break
|
|
||||||
|
|
||||||
# 转换为列表以便序列化
|
|
||||||
user_document_map = {uid: list(doc_ids) for uid, doc_ids in user_document_map.items()}
|
|
||||||
logger.debug(f"集合 {col} 中找到用户和文档映射: {user_document_map}")
|
|
||||||
|
|
||||||
db_types_with_data[db_type] = {
|
|
||||||
"userids": user_document_map
|
|
||||||
}
|
|
||||||
|
|
||||||
logger.debug(f"可用 db_types 和数据: {db_types_with_data}")
|
|
||||||
return db_types_with_data
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"列出集合和用户失败: {str(e)}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
def view_collection_details(userid: str) -> None:
|
|
||||||
"""
|
|
||||||
查看特定 userid 在所有集合中的内容和容量,包含 document_id 和元数据。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if not userid or "_" in userid:
|
|
||||||
raise ValueError("userid 不能为空且不能包含下划线")
|
|
||||||
|
|
||||||
logger.debug(f"正在查看 userid {userid} 的集合")
|
|
||||||
ensure_milvus_directory()
|
|
||||||
initialize_milvus_connection()
|
|
||||||
collections = utility.list_collections()
|
|
||||||
db_types = [col[len("ragdb_"):] for col in collections if col.startswith("ragdb_")]
|
|
||||||
|
|
||||||
if not db_types:
|
|
||||||
logger.debug(f"未找到任何集合")
|
|
||||||
return
|
|
||||||
|
|
||||||
for db_type in db_types:
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
continue
|
|
||||||
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
|
|
||||||
try:
|
|
||||||
all_pks = collection.query(expr=f"userid == '{userid}'", output_fields=["pk"], limit=10000)
|
|
||||||
num_entities = len(all_pks)
|
|
||||||
results = collection.query(
|
|
||||||
expr=f"userid == '{userid}'",
|
|
||||||
output_fields=["userid","text", "document_id", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
limit=10
|
|
||||||
)
|
|
||||||
logger.debug(f"集合 {collection_name} 中 userid {userid} 的文档数: {num_entities}")
|
|
||||||
|
|
||||||
if num_entities == 0:
|
|
||||||
logger.debug(f"集合 {collection_name} 中 userid {userid} 无文档")
|
|
||||||
continue
|
|
||||||
|
|
||||||
logger.debug(f"集合 {collection_name} 中 userid {userid} 的内容:")
|
|
||||||
for idx, doc in enumerate(results, 1):
|
|
||||||
metadata = {
|
|
||||||
"userid": doc.get("userid", ""),
|
|
||||||
"filename": doc.get("filename", ""),
|
|
||||||
"file_path": doc.get("file_path", ""),
|
|
||||||
"upload_time": doc.get("upload_time", ""),
|
|
||||||
"file_type": doc.get("file_type", "")
|
|
||||||
}
|
|
||||||
logger.debug(f"文档 {idx}: 内容: {doc.get('text', '')[:200]}..., 元数据: {metadata}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"查询集合 {collection_name} 的文档失败: {str(e)}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"无法查看 userid {userid} 的集合详情: {str(e)}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
def view_vector_data(db_type: str, userid: Optional[str] = None, document_id: Optional[str] = None, limit: int = 100) -> Dict[str, Dict]:
|
|
||||||
"""
|
|
||||||
查看指定 db_type 中的向量数据,可选按 userid 和 document_id 过滤,包含完整元数据和向量。
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if not db_type or "_" in db_type:
|
|
||||||
raise ValueError("db_type 不能为空且不能包含下划线")
|
|
||||||
if limit <= 0 or limit > 16384:
|
|
||||||
raise ValueError("limit 必须在 1 到 16384 之间")
|
|
||||||
if userid and "_" in userid:
|
|
||||||
raise ValueError("userid 不能包含下划线")
|
|
||||||
if document_id and "_" in document_id:
|
|
||||||
raise ValueError("document_id 不能包含下划线")
|
|
||||||
|
|
||||||
initialize_milvus_connection()
|
|
||||||
collection_name = f"ragdb_{db_type}"
|
|
||||||
if not utility.has_collection(collection_name):
|
|
||||||
logger.warning(f"集合 {collection_name} 不存在")
|
|
||||||
return {}
|
|
||||||
|
|
||||||
collection = Collection(collection_name)
|
|
||||||
collection.load()
|
|
||||||
logger.debug(f"加载集合: {collection_name}")
|
|
||||||
|
|
||||||
expr = []
|
|
||||||
if userid:
|
|
||||||
expr.append(f"userid == '{userid}'")
|
|
||||||
if document_id:
|
|
||||||
expr.append(f"document_id == '{document_id}'")
|
|
||||||
expr = " && ".join(expr) if expr else ""
|
|
||||||
|
|
||||||
results = collection.query(
|
|
||||||
expr=expr,
|
|
||||||
output_fields=["pk", "text", "document_id", "vector", "filename", "file_path", "upload_time", "file_type"],
|
|
||||||
limit=limit
|
|
||||||
)
|
|
||||||
|
|
||||||
vector_data = {}
|
|
||||||
for doc in results:
|
|
||||||
pk = doc.get("pk", str(uuid.uuid4()))
|
|
||||||
text = doc.get("text", "")
|
|
||||||
doc_id = doc.get("document_id", "")
|
|
||||||
vector = doc.get("vector", [])
|
|
||||||
metadata = {
|
|
||||||
"filename": doc.get("filename", ""),
|
|
||||||
"file_path": doc.get("file_path", ""),
|
|
||||||
"upload_time": doc.get("upload_time", ""),
|
|
||||||
"file_type": doc.get("file_type", "")
|
|
||||||
}
|
|
||||||
vector_data[pk] = {
|
|
||||||
"text": text,
|
|
||||||
"vector": vector,
|
|
||||||
"document_id": doc_id,
|
|
||||||
"metadata": metadata
|
|
||||||
}
|
|
||||||
logger.debug(f"pk: {pk}, text: {text[:200]}..., document_id: {doc_id}, vector_length: {len(vector)}, metadata: {metadata}")
|
|
||||||
|
|
||||||
logger.debug(f"共找到 {len(vector_data)} 条向量数据")
|
|
||||||
return vector_data
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"查看向量数据失败: {str(e)}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
def main():
|
|
||||||
userid = "testuser1"
|
|
||||||
db_type = "textdb"
|
|
||||||
|
|
||||||
# logger.info("\n测试 1:带文档初始化")
|
|
||||||
# documents = [
|
|
||||||
# Document(
|
|
||||||
# page_content="深度学习是基于深层神经网络的机器学习子集。",
|
|
||||||
# metadata={
|
|
||||||
# "userid": userid,
|
|
||||||
# "document_id": str(uuid.uuid4()),
|
|
||||||
# "filename": "test_doc1.txt",
|
|
||||||
# "file_path": "/path/to/test_doc1.txt",
|
|
||||||
# "upload_time": datetime.now().isoformat(),
|
|
||||||
# "file_type": "txt"
|
|
||||||
# }
|
|
||||||
# ),
|
|
||||||
# Document(
|
|
||||||
# page_content="知识图谱是一个结构化的语义知识库。",
|
|
||||||
# metadata={
|
|
||||||
# "userid": userid,
|
|
||||||
# "document_id": str(uuid.uuid4()),
|
|
||||||
# "filename": "test_doc2.txt",
|
|
||||||
# "file_path": "/path/to/test_doc2.txt",
|
|
||||||
# "upload_time": datetime.now().isoformat(),
|
|
||||||
# "file_type": "txt"
|
|
||||||
# }
|
|
||||||
# ),
|
|
||||||
# ]
|
|
||||||
#
|
|
||||||
# try:
|
|
||||||
# vector_store = get_vector_db(userid, db_type, documents=documents)
|
|
||||||
# logger.info(f"集合: ragdb_{db_type}")
|
|
||||||
# logger.info(f"成功为 userid {userid} 在 {db_type} 中插入文档")
|
|
||||||
# except Exception as e:
|
|
||||||
# logger.error(f"失败: {str(e)}")
|
|
||||||
|
|
||||||
logger.info("\n测试 2:列出所有 db_types 和文档映射")
|
|
||||||
try:
|
|
||||||
db_types = list_user_collections()
|
|
||||||
logger.info(f"可用 db_types 和文档: {db_types}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"失败: {str(e)}")
|
|
||||||
|
|
||||||
logger.info(f"\n测试 3:查看 userid {userid} 的所有集合")
|
|
||||||
try:
|
|
||||||
view_collection_details(userid)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"失败: {str(e)}")
|
|
||||||
|
|
||||||
# logger.info(f"\n测试 4:查看向量数据")
|
|
||||||
# try:
|
|
||||||
# vector_data = view_vector_data(db_type, userid=userid)
|
|
||||||
# logger.info(f"向量数据: {vector_data}")
|
|
||||||
# except Exception as e:
|
|
||||||
# logger.error(f"失败: {str(e)}")
|
|
||||||
|
|
||||||
logger.info(f"\n测试 5:获取 userid {userid} 在{db_type}数据库的文档映射")
|
|
||||||
try:
|
|
||||||
mapping = get_document_mapping(userid, db_type)
|
|
||||||
logger.info(f"文档映射: {mapping}")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"失败: {str(e)}")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@ -1 +0,0 @@
|
|||||||
__version__ = '0.0.1'
|
|
||||||
52
setup.py
52
setup.py
@ -1,52 +0,0 @@
|
|||||||
# -*- coding: utf-8 -*-
|
|
||||||
|
|
||||||
from rag.version import __version__
|
|
||||||
try:
|
|
||||||
from setuptools import setup
|
|
||||||
except ImportError:
|
|
||||||
from distutils.core import setup
|
|
||||||
required = []
|
|
||||||
with open('requirements.txt', 'r') as f:
|
|
||||||
ls = f.read()
|
|
||||||
required = ls.split('\n')
|
|
||||||
|
|
||||||
with open('rag/version.py', 'r') as f:
|
|
||||||
x = f.read()
|
|
||||||
y = x[x.index("'")+1:]
|
|
||||||
z = y[:y.index("'")]
|
|
||||||
version = z
|
|
||||||
with open("README.md", "r") as fh:
|
|
||||||
long_description = fh.read()
|
|
||||||
|
|
||||||
name = "rag"
|
|
||||||
description = "rag"
|
|
||||||
author = "yumoqing"
|
|
||||||
email = "yumoqing@gmail.com"
|
|
||||||
|
|
||||||
package_data = {}
|
|
||||||
|
|
||||||
setup(
|
|
||||||
name="rag",
|
|
||||||
version=version,
|
|
||||||
|
|
||||||
# uncomment the following lines if you fill them out in release.py
|
|
||||||
description=description,
|
|
||||||
author=author,
|
|
||||||
author_email=email,
|
|
||||||
platforms='any',
|
|
||||||
install_requires=required ,
|
|
||||||
packages=[
|
|
||||||
"rag"
|
|
||||||
],
|
|
||||||
package_data=package_data,
|
|
||||||
keywords = [
|
|
||||||
],
|
|
||||||
url="https://github.com/yumoqing/rag",
|
|
||||||
long_description=long_description,
|
|
||||||
long_description_content_type="text/markdown",
|
|
||||||
classifiers = [
|
|
||||||
'Operating System :: OS Independent',
|
|
||||||
'Programming Language :: Python :: 3',
|
|
||||||
'License :: OSI Approved :: MIT License',
|
|
||||||
],
|
|
||||||
)
|
|
||||||
Loading…
x
Reference in New Issue
Block a user