470 lines
16 KiB
Python
470 lines
16 KiB
Python
from urllib.request import Request
|
|
|
|
from appPublic.timeUtils import curDateString
|
|
from filemgr.filemgr import FileMgr
|
|
from rag.uapi_service import APIService
|
|
from appPublic.registerfunction import RegisterFunction
|
|
from appPublic.log import debug, error, info
|
|
from sqlor.dbpools import DBPools
|
|
import asyncio
|
|
import aiohttp
|
|
from langchain_core.documents import Document
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
import os
|
|
import re
|
|
import time
|
|
import uuid
|
|
from datetime import datetime
|
|
import traceback
|
|
from filetxt.loader import fileloader
|
|
from ahserver.serverenv import get_serverenv
|
|
from typing import List, Dict, Any
|
|
import json
|
|
|
|
class RagFileMgr(FileMgr):
|
|
async def get_folder_ownerid(self, sor):
|
|
fiid = self.fiid
|
|
recs = await sor.R('kdb', {'id': self.fiid})
|
|
if len(recs) > 0:
|
|
return recs[0].orgid
|
|
return None
|
|
|
|
async def get_organization_quota(self, sor, orgid):
|
|
sql = """select a.* from ragquota a, kdb b
|
|
where a.orgid = b.orgid
|
|
and b.id = ${id}$
|
|
and ${today}$ >= a.enabled_date
|
|
and ${today}$ < a.expired_date
|
|
"""
|
|
recs = await sor.sqlExe(sql, {
|
|
'id': self.fiid,
|
|
'today': curDateTime()
|
|
})
|
|
if len(recs) > 0:
|
|
r = recs[0]
|
|
return r.quota, r.expired_date
|
|
|
|
async def get_service_params(self,orgid):
|
|
""" 根据 orgid 从数据库获取服务参数 (仅 upappid),假设 service_opts 表返回单条记录。 """
|
|
db = DBPools()
|
|
dbname = "kyrag"
|
|
|
|
sql_opts = """
|
|
SELECT embedding_id, vdb_id, reranker_id, triples_id, gdb_id, entities_id
|
|
FROM service_opts
|
|
WHERE orgid = ${orgid}$
|
|
"""
|
|
try:
|
|
async with db.sqlorContext(dbname) as sor:
|
|
opts_result = await sor.sqlExe(sql_opts, {"orgid": orgid})
|
|
if not opts_result:
|
|
error(f"未找到 orgid={orgid} 的服务配置")
|
|
return None
|
|
opts = opts_result[0]
|
|
except Exception as e:
|
|
error(f"查询 service_opts 失败: {str(e)}, 堆栈: {traceback.format_exc()}")
|
|
return None
|
|
|
|
# 收集服务 ID
|
|
service_ids = set()
|
|
for key in ['embedding_id', 'vdb_id', 'reranker_id', 'triples_id', 'gdb_id', 'entities_id']:
|
|
if opts[key]:
|
|
service_ids.add(opts[key])
|
|
|
|
# 检查 service_ids 是否为空
|
|
if not service_ids:
|
|
error(f"未找到任何服务 ID for orgid={orgid}")
|
|
return None
|
|
|
|
# 手动构造 IN 子句的 ID 列表
|
|
id_list = ','.join([f"'{id}'" for id in service_ids]) # 确保每个 ID 被单引号包裹
|
|
sql_services = f"""
|
|
SELECT id, name, upappid
|
|
FROM ragservices
|
|
WHERE id IN ({id_list})
|
|
"""
|
|
try:
|
|
async with db.sqlorContext(dbname) as sor:
|
|
services_result = await sor.sqlExe(sql_services, {})
|
|
if not services_result:
|
|
error(f"未找到服务 ID {service_ids} 的 ragservices 配置")
|
|
return None
|
|
|
|
# 构建服务参数字典,基于 name 字段匹配,仅存储 upappid
|
|
service_params = {
|
|
'embedding': None,
|
|
'vdb': None,
|
|
'reranker': None,
|
|
'triples': None,
|
|
'gdb': None,
|
|
'entities': None
|
|
}
|
|
for service in services_result:
|
|
name = service['name']
|
|
if name == 'bgem3嵌入':
|
|
service_params['embedding'] = service['upappid']
|
|
elif name == 'milvus向量检索':
|
|
service_params['vdb'] = service['upappid']
|
|
elif name == 'bgem2v3重排':
|
|
service_params['reranker'] = service['upappid']
|
|
elif name == 'mrebel三元组抽取':
|
|
service_params['triples'] = service['upappid']
|
|
elif name == 'neo4j删除知识库':
|
|
service_params['gdb'] = service['upappid']
|
|
elif name == 'small实体抽取':
|
|
service_params['entities'] = service['upappid']
|
|
|
|
# 检查是否所有服务参数都已填充
|
|
missing_services = [k for k, v in service_params.items() if v is None]
|
|
if missing_services:
|
|
error(f"未找到以下服务的配置: {missing_services}")
|
|
return None
|
|
|
|
return service_params
|
|
except Exception as e:
|
|
error(f"查询 ragservices 失败: {str(e)}, 堆栈: {traceback.format_exc()}")
|
|
return None
|
|
|
|
async def file_uploaded(self, request, ns, userid):
|
|
"""将文档插入 Milvus 并抽取三元组到 Neo4j"""
|
|
debug(f'Received ns: {ns=}')
|
|
realpath = ns.get('realpath', '')
|
|
fiid = ns.get('fiid', '')
|
|
id = ns.get('id', '')
|
|
orgid = ns.get('ownerid', '')
|
|
db_type = ''
|
|
api_service = APIService()
|
|
debug(
|
|
f'Inserting document: file_path={realpath}, userid={orgid}, db_type={db_type}, knowledge_base_id={fiid}, document_id={id}')
|
|
|
|
timings = {}
|
|
start_total = time.time()
|
|
|
|
try:
|
|
if not orgid or not fiid or not id:
|
|
raise ValueError("orgid、fiid 和 id 不能为空")
|
|
if len(orgid) > 32 or len(fiid) > 255:
|
|
raise ValueError("orgid 或 fiid 的长度超出限制")
|
|
if not os.path.exists(realpath):
|
|
raise ValueError(f"文件 {realpath} 不存在")
|
|
|
|
# 获取服务参数
|
|
service_params = await get_service_params(orgid)
|
|
if not service_params:
|
|
raise ValueError("无法获取服务参数")
|
|
|
|
supported_formats = {'pdf', 'docx', 'xlsx', 'pptx', 'csv', 'txt'}
|
|
ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else ''
|
|
if ext not in supported_formats:
|
|
raise ValueError(f"不支持的文件格式: {ext}, 支持的格式: {', '.join(supported_formats)}")
|
|
|
|
debug(f"加载文件: {realpath}")
|
|
start_load = time.time()
|
|
text = fileloader(realpath)
|
|
text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n]', '', text)
|
|
timings["load_file"] = time.time() - start_load
|
|
debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}")
|
|
if not text or not text.strip():
|
|
raise ValueError(f"文件 {realpath} 加载为空")
|
|
|
|
document = Document(page_content=text)
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size=500,
|
|
chunk_overlap=100,
|
|
length_function=len)
|
|
debug("开始分片文件内容")
|
|
start_split = time.time()
|
|
chunks = text_splitter.split_documents([document])
|
|
timings["split_text"] = time.time() - start_split
|
|
debug(
|
|
f"文本分片耗时: {timings['split_text']:.2f} 秒, 分片数量: {len(chunks)}, 分片内容: {[chunk.page_content[:50] for chunk in chunks[:5]]}")
|
|
if not chunks:
|
|
raise ValueError(f"文件 {realpath} 未生成任何文档块")
|
|
|
|
filename = os.path.basename(realpath).rsplit('.', 1)[0]
|
|
upload_time = datetime.now().isoformat()
|
|
|
|
debug("调用嵌入服务生成向量")
|
|
start_embedding = time.time()
|
|
texts = [chunk.page_content for chunk in chunks]
|
|
embeddings = []
|
|
for i in range(0, len(texts), 10): # 每次处理 10 个文本块
|
|
batch_texts = texts[i:i + 10]
|
|
batch_embeddings = await api_service.get_embeddings(
|
|
request=Request,
|
|
texts=batch_texts,
|
|
upappid=service_params['embedding'],
|
|
apiname="BAAI/bge-m3",
|
|
user=userid
|
|
)
|
|
embeddings.extend(batch_embeddings)
|
|
if not embeddings or not all(len(vec) == 1024 for vec in embeddings):
|
|
raise ValueError("所有嵌入向量必须是长度为 1024 的浮点数列表")
|
|
timings["generate_embeddings"] = time.time() - start_embedding
|
|
debug(f"生成嵌入向量耗时: {timings['generate_embeddings']:.2f} 秒, 嵌入数量: {len(embeddings)}")
|
|
|
|
chunks_data = []
|
|
for i, chunk in enumerate(chunks):
|
|
chunks_data.append({
|
|
"userid": orgid,
|
|
"knowledge_base_id": fiid,
|
|
"text": chunk.page_content,
|
|
"vector": embeddings[i],
|
|
"document_id": id,
|
|
"filename": filename + '.' + ext,
|
|
"file_path": realpath,
|
|
"upload_time": upload_time,
|
|
"file_type": ext,
|
|
})
|
|
|
|
debug(f"调用插入文件端点: {realpath}")
|
|
start_milvus = time.time()
|
|
for i in range(0, len(chunks_data), 10): # 每次处理 10 条数据
|
|
batch_chunks = chunks_data[i:i + 10]
|
|
result = await api_service.milvus_insert_document(
|
|
request=request,
|
|
chunks=batch_chunks,
|
|
db_type=db_type,
|
|
upappid=service_params['vdb'],
|
|
apiname="milvus/insertdocument", # 固定 apiname
|
|
user=userid
|
|
)
|
|
if result.get("status") != "success":
|
|
raise ValueError(result.get("message", "Milvus 插入失败"))
|
|
timings["insert_milvus"] = time.time() - start_milvus
|
|
debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f} 秒")
|
|
|
|
if result.get("status") != "success":
|
|
timings["total"] = time.time() - start_total
|
|
return {"status": "error", "document_id": id, "timings": timings,
|
|
"message": result.get("message", "未知错误"), "status_code": 400}
|
|
|
|
debug("调用三元组抽取服务")
|
|
start_triples = time.time()
|
|
try:
|
|
chunk_texts = [doc.page_content for doc in chunks]
|
|
debug(f"处理 {len(chunk_texts)} 个分片进行三元组抽取")
|
|
tasks = [
|
|
api_service.extract_triples(
|
|
request=Request,
|
|
text=chunk,
|
|
upappid=service_params['triples'],
|
|
apiname="Babelscape/mrebel-large", # 固定 apiname
|
|
user=userid
|
|
) for chunk in chunk_texts
|
|
]
|
|
results = await asyncio.gather(*tasks, return_exceptions=True)
|
|
|
|
triples = []
|
|
for i, result in enumerate(results):
|
|
if isinstance(result, list):
|
|
triples.extend(result)
|
|
debug(f"分片 {i + 1} 抽取到 {len(result)} 个三元组: {result[:5]}")
|
|
else:
|
|
error(f"分片 {i + 1} 处理失败: {str(result)}")
|
|
|
|
unique_triples = []
|
|
seen = set()
|
|
for t in triples:
|
|
identifier = (t['head'].lower(), t['tail'].lower(), t['type'].lower())
|
|
if identifier not in seen:
|
|
seen.add(identifier)
|
|
unique_triples.append(t)
|
|
else:
|
|
for existing in unique_triples:
|
|
if (existing['head'].lower() == t['head'].lower() and
|
|
existing['tail'].lower() == t['tail'].lower() and
|
|
len(t['type']) > len(existing['type'])):
|
|
unique_triples.remove(existing)
|
|
unique_triples.append(t)
|
|
debug(f"替换三元组为更具体类型: {t}")
|
|
break
|
|
|
|
timings["extract_triples"] = time.time() - start_triples
|
|
debug(
|
|
f"三元组抽取耗时: {timings['extract_triples']:.2f} 秒, 抽取到 {len(unique_triples)} 个三元组: {unique_triples[:5]}")
|
|
|
|
debug(f"抽取到 {len(unique_triples)} 个三元组,调用 Neo4j 服务插入")
|
|
start_neo4j = time.time()
|
|
for i in range(0, len(unique_triples), 30): # 每次插入 30 个三元组
|
|
batch_triples = unique_triples[i:i + 30]
|
|
neo4j_result = await api_service.neo4j_insert_triples(
|
|
request=Request,
|
|
triples=batch_triples,
|
|
document_id=id,
|
|
knowledge_base_id=fiid,
|
|
userid=orgid,
|
|
upappid=service_params['gdb'],
|
|
apiname="neo4j/inserttriples", # 固定 apiname
|
|
user=userid
|
|
)
|
|
debug(f"Neo4j 服务响应: {neo4j_result}")
|
|
if neo4j_result.get("status") != "success":
|
|
timings["insert_neo4j"] = time.time() - start_neo4j
|
|
timings["total"] = time.time() - start_total
|
|
return {"status": "error", "document_id": id, "collection_name": "ragdb",
|
|
"timings": timings,
|
|
"message": f"Neo4j 三元组插入失败: {neo4j_result.get('message', '未知错误')}",
|
|
"status_code": 400}
|
|
info(f"文件 {realpath} 三元组成功插入 Neo4j: {neo4j_result.get('message')}")
|
|
else:
|
|
debug(f"文件 {realpath} 未抽取到三元组")
|
|
timings["insert_neo4j"] = time.time() - start_neo4j
|
|
debug(f"Neo4j 插入耗时: {timings['insert_neo4j']:.2f} 秒")
|
|
|
|
except Exception as e:
|
|
timings["extract_triples"] = time.time() - start_triples if "extract_triples" not in timings else \
|
|
timings[
|
|
"extract_triples"]
|
|
timings["insert_neo4j"] = time.time() - start_neo4j
|
|
debug(f"处理三元组或 Neo4j 插入失败: {str(e)}, 堆栈: {traceback.format_exc()}")
|
|
timings["total"] = time.time() - start_total
|
|
return {"status": "success", "document_id": id, "collection_name": "ragdb", "timings": timings,
|
|
"unique_triples": unique_triples,
|
|
"message": f"文件 {realpath} 成功嵌入,但三元组处理或 Neo4j 插入失败: {str(e)}",
|
|
"status_code": 200}
|
|
|
|
timings["total"] = time.time() - start_total
|
|
debug(f"总耗时: {timings['total']:.2f} 秒")
|
|
return {"status": "success", "userid": orgid, "document_id": id, "collection_name": "ragdb",
|
|
"timings": timings,
|
|
"unique_triples": unique_triples, "message": f"文件 {realpath} 成功嵌入并处理三元组",
|
|
"status_code": 200}
|
|
|
|
except Exception as e:
|
|
error(f"插入文档失败: {str(e)}, 堆栈: {traceback.format_exc()}")
|
|
timings["total"] = time.time() - start_total
|
|
return {"status": "error", "document_id": id, "collection_name": "ragdb", "timings": timings,
|
|
"message": f"插入文档失败: {str(e)}", "status_code": 400}
|
|
|
|
async def file_deleted(self, request, recs, userid):
|
|
"""删除用户指定文件数据,包括 Milvus 和 Neo4j 中的记录"""
|
|
if not isinstance(recs, list):
|
|
recs = [recs] # 确保 recs 是列表,即使传入单个记录
|
|
results = []
|
|
api_service = APIService()
|
|
total_nodes_deleted = 0
|
|
total_rels_deleted = 0
|
|
|
|
for rec in recs:
|
|
id = rec.get('id', '')
|
|
realpath = rec.get('realpath', '')
|
|
fiid = rec.get('fiid', '')
|
|
orgid = rec.get('orgid', '')
|
|
db_type = ''
|
|
collection_name = "ragdb" if not db_type else f"ragdb_{db_type}"
|
|
|
|
try:
|
|
required_fields = ['id', 'realpath', 'fiid', 'orgid']
|
|
missing_fields = [field for field in required_fields if not rec.get(field, '')]
|
|
if missing_fields:
|
|
raise ValueError(f"缺少必填字段: {', '.join(missing_fields)}")
|
|
|
|
# 获取服务参数
|
|
service_params = await self.get_service_params(orgid)
|
|
if not service_params:
|
|
raise ValueError("无法获取服务参数")
|
|
|
|
debug(
|
|
f"调用删除文件端点: userid={orgid}, file_path={realpath}, knowledge_base_id={fiid}, document_id={id}")
|
|
milvus_result = await api_service.milvus_delete_document(
|
|
request=request,
|
|
userid=orgid,
|
|
file_path=realpath,
|
|
knowledge_base_id=fiid,
|
|
document_id=id,
|
|
db_type=db_type,
|
|
upappid=service_params['vdb'],
|
|
apiname="milvus/deletedocument",
|
|
user=userid
|
|
)
|
|
|
|
if milvus_result.get("status") != "success":
|
|
raise ValueError(milvus_result.get("message", "Milvus 删除失败"))
|
|
|
|
neo4j_deleted_nodes = 0
|
|
neo4j_deleted_rels = 0
|
|
try:
|
|
debug(f"调用 Neo4j 删除文档端点: document_id={id}")
|
|
neo4j_result = await api_service.neo4j_delete_document(
|
|
request=request,
|
|
document_id=id,
|
|
upappid=service_params['gdb'],
|
|
apiname="neo4j/deletedocument",
|
|
user=userid
|
|
)
|
|
if neo4j_result.get("status") != "success":
|
|
raise ValueError(neo4j_result.get("message", "Neo4j 删除失败"))
|
|
nodes_deleted = neo4j_result.get("nodes_deleted", 0)
|
|
rels_deleted = neo4j_result.get("rels_deleted", 0)
|
|
neo4j_deleted_nodes += nodes_deleted
|
|
neo4j_deleted_rels += rels_deleted
|
|
total_nodes_deleted += nodes_deleted
|
|
total_rels_deleted += rels_deleted
|
|
info(f"成功删除 document_id={id} 的 {nodes_deleted} 个 Neo4j 节点和 {rels_deleted} 个关系")
|
|
except Exception as e:
|
|
error(f"删除 document_id={id} 的 Neo4j 数据失败: {str(e)}")
|
|
|
|
results.append({
|
|
"status": "success",
|
|
"collection_name": collection_name,
|
|
"document_id": id,
|
|
"message": f"成功删除文件 {realpath} 的 Milvus 记录,{neo4j_deleted_nodes} 个 Neo4j 节点,{neo4j_deleted_rels} 个 Neo4j 关系",
|
|
"status_code": 200
|
|
})
|
|
|
|
except Exception as e:
|
|
error(f"删除文档 {realpath} 失败: {str(e)}, 堆栈: {traceback.format_exc()}")
|
|
results.append({
|
|
"status": "error",
|
|
"collection_name": collection_name,
|
|
"document_id": id,
|
|
"message": f"删除文档 {realpath} 失败: {str(e)}",
|
|
"status_code": 400
|
|
})
|
|
|
|
return {
|
|
"status": "success" if all(r["status"] == "success" for r in results) else "partial",
|
|
"results": results,
|
|
"total_nodes_deleted": total_nodes_deleted,
|
|
"total_rels_deleted": total_rels_deleted,
|
|
"message": f"处理 {len(recs)} 个文件,成功删除 {sum(1 for r in results if r['status'] == 'success')} 个",
|
|
"status_code": 200 if all(r["status"] == "success" for r in results) else 207
|
|
}
|
|
|
|
async def test_ragfilemgr():
|
|
"""测试 RagFileMgr 类的 get_service_params"""
|
|
print("初始化数据库连接池...")
|
|
dbs = {
|
|
"kyrag": {
|
|
"driver": "aiomysql",
|
|
"async_mode": True,
|
|
"coding": "utf8",
|
|
"maxconn": 100,
|
|
"dbname": "kyrag",
|
|
"kwargs": {
|
|
"user": "test",
|
|
"db": "kyrag",
|
|
"password": "QUZVcXg5V1p1STMybG5Ia6mX9D0v7+g=",
|
|
"host": "db"
|
|
}
|
|
}
|
|
}
|
|
DBPools(dbs)
|
|
|
|
ragfilemgr = RagFileMgr()
|
|
orgid = "04J6VbxLqB_9RPMcgOv_8"
|
|
result = await ragfilemgr.get_service_params(orgid)
|
|
print(f"get_service_params 结果: {result}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(test_ragfilemgr())
|
|
|
|
|
|
## usage
|
|
# mgr = RagFileMgr(fiid)
|
|
# await mgr.add_file(request, params_kw)
|
|
# await mgr.delete_file(request, file_id)
|
|
##
|