Metadata-Version: 2.4 Name: rag Version: 0.0.1 Summary: rag Home-page: https://github.com/yumoqing/rag Author: yumoqing Author-email: yumoqing@gmail.com Platform: any Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python :: 3 Classifier: License :: OSI Approved :: MIT License Description-Content-Type: text/markdown Requires-Dist: chromadb Requires-Dist: langchain Requires-Dist: langchain_community Requires-Dist: unstructured Requires-Dist: langchain-text-splitters Requires-Dist: unstructured[all-docs] Requires-Dist: langchain_milvus Requires-Dist: langchain_huggingface Requires-Dist: transformers Requires-Dist: openai Requires-Dist: torch Requires-Dist: torchvision Requires-Dist: pymilvus Dynamic: author Dynamic: author-email Dynamic: classifier Dynamic: description Dynamic: description-content-type Dynamic: home-page Dynamic: platform Dynamic: requires-dist Dynamic: summary # 知识库服务器 本系统为不同的客户提供自我管理的知识库,并在知识库基础上提供知识检索 本系统提供API形式,为注册的服务器提供知识服支持,不面向最终客户 ## 依赖 依赖[这些模块](requirements.txt) ## 安装部署 1. 创建rag用户 2. 登录rag用户 3. 执行以下命令 ``` git clone git@git.kaiyuancloud.cn:yumoqing/rag cd rag/script ./install.sh ``` 将项目在用户根目录checkout 3. ## 功能 管理client系统的客户知识库,并提供知识查询 每个客户可以创建一到多个独立的知识库,为不同的业务场景提供知识库知识 知识库之间数据相互独立,互不干扰。 ## http API ### add 增加知识库文档 #### path /api/add #### method POST #### 输入 name: authentication value: Bears ${apikey} score: headers name: file_name value: path of uploaded file score: data name: userid value: userid of client system score: data name: kdbname value: rag kdb name score: data #### 输出 ### query 查询知识库 #### path /api/query #### method POST #### 输入 name: authentication value: Bears ${apikey} score: headers name: prompt value: ${prompt} score: data name: userid value: ${userid} score: data name: kdbname value: ${kdbname} score: data #### 输出 ``` { total:返回记录条数, rows:返回记录内容 } rows有以下属性 content:文本内容 distances:距离 source:文档path ```