This commit is contained in:
wangmeihua 2025-08-12 16:24:33 +08:00
parent fcb477d7ea
commit ea205fbb7c
2 changed files with 751 additions and 5 deletions

View File

@ -1,5 +1,25 @@
from urllib.request import Request
from appPublic.timeUtils import curDateString from appPublic.timeUtils import curDateString
form filemgr.filemgr import FileMgr from filemgr.filemgr import FileMgr
from rag.uapi_service import APIService
from appPublic.registerfunction import RegisterFunction
from appPublic.log import debug, error, info
from sqlor.dbpools import DBPools
import asyncio
import aiohttp
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
import os
import re
import time
import uuid
from datetime import datetime
import traceback
from filetxt.loader import fileloader
from ahserver.serverenv import get_serverenv
from typing import List, Dict, Any
import json
class RagFileMgr(FileMgr): class RagFileMgr(FileMgr):
async def get_folder_ownerid(self, sor): async def get_folder_ownerid(self, sor):
@ -24,12 +44,423 @@ where a.orgid = b.orgid
r = recs[0] r = recs[0]
return r.quota, r.expired_date return r.quota, r.expired_date
async def get_service_params(self,orgid):
""" 根据 orgid 从数据库获取服务参数 (仅 upappid),假设 service_opts 表返回单条记录。 """
db = DBPools()
dbname = "kyrag"
sql_opts = """
SELECT embedding_id, vdb_id, reranker_id, triples_id, gdb_id, entities_id
FROM service_opts
WHERE orgid = ${orgid}$
"""
try:
async with db.sqlorContext(dbname) as sor:
opts_result = await sor.sqlExe(sql_opts, {"orgid": orgid})
if not opts_result:
error(f"未找到 orgid={orgid} 的服务配置")
return None
opts = opts_result[0]
except Exception as e:
error(f"查询 service_opts 失败: {str(e)}, 堆栈: {traceback.format_exc()}")
return None
# 收集服务 ID
service_ids = set()
for key in ['embedding_id', 'vdb_id', 'reranker_id', 'triples_id', 'gdb_id', 'entities_id']:
if opts[key]:
service_ids.add(opts[key])
# 检查 service_ids 是否为空
if not service_ids:
error(f"未找到任何服务 ID for orgid={orgid}")
return None
# 手动构造 IN 子句的 ID 列表
id_list = ','.join([f"'{id}'" for id in service_ids]) # 确保每个 ID 被单引号包裹
sql_services = f"""
SELECT id, name, upappid
FROM ragservices
WHERE id IN ({id_list})
"""
try:
async with db.sqlorContext(dbname) as sor:
services_result = await sor.sqlExe(sql_services, {})
if not services_result:
error(f"未找到服务 ID {service_ids} 的 ragservices 配置")
return None
# 构建服务参数字典,基于 name 字段匹配,仅存储 upappid
service_params = {
'embedding': None,
'vdb': None,
'reranker': None,
'triples': None,
'gdb': None,
'entities': None
}
for service in services_result:
name = service['name']
if name == 'bgem3嵌入':
service_params['embedding'] = service['upappid']
elif name == 'milvus向量检索':
service_params['vdb'] = service['upappid']
elif name == 'bgem2v3重排':
service_params['reranker'] = service['upappid']
elif name == 'mrebel三元组抽取':
service_params['triples'] = service['upappid']
elif name == 'neo4j删除知识库':
service_params['gdb'] = service['upappid']
elif name == 'small实体抽取':
service_params['entities'] = service['upappid']
# 检查是否所有服务参数都已填充
missing_services = [k for k, v in service_params.items() if v is None]
if missing_services:
error(f"未找到以下服务的配置: {missing_services}")
return None
return service_params
except Exception as e:
error(f"查询 ragservices 失败: {str(e)}, 堆栈: {traceback.format_exc()}")
return None
async def file_uploaded(self, request, ns, userid): async def file_uploaded(self, request, ns, userid):
pass """将文档插入 Milvus 并抽取三元组到 Neo4j"""
debug(f'Received ns: {ns=}')
realpath = ns.get('realpath', '')
fiid = ns.get('fiid', '')
id = ns.get('id', '')
orgid = ns.get('orgid', '')
db_type = ''
api_service = APIService()
debug(
f'Inserting document: file_path={realpath}, userid={orgid}, db_type={db_type}, knowledge_base_id={fiid}, document_id={id}')
timings = {}
start_total = time.time()
try:
if not orgid or not fiid or not id:
raise ValueError("orgid、fiid 和 id 不能为空")
if len(orgid) > 32 or len(fiid) > 255:
raise ValueError("orgid 或 fiid 的长度超出限制")
if not os.path.exists(realpath):
raise ValueError(f"文件 {realpath} 不存在")
# 获取服务参数
service_params = await get_service_params(orgid)
if not service_params:
raise ValueError("无法获取服务参数")
supported_formats = {'pdf', 'docx', 'xlsx', 'pptx', 'csv', 'txt'}
ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else ''
if ext not in supported_formats:
raise ValueError(f"不支持的文件格式: {ext}, 支持的格式: {', '.join(supported_formats)}")
debug(f"加载文件: {realpath}")
start_load = time.time()
text = fileloader(realpath)
text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n]', '', text)
timings["load_file"] = time.time() - start_load
debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}")
if not text or not text.strip():
raise ValueError(f"文件 {realpath} 加载为空")
document = Document(page_content=text)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
length_function=len)
debug("开始分片文件内容")
start_split = time.time()
chunks = text_splitter.split_documents([document])
timings["split_text"] = time.time() - start_split
debug(
f"文本分片耗时: {timings['split_text']:.2f} 秒, 分片数量: {len(chunks)}, 分片内容: {[chunk.page_content[:50] for chunk in chunks[:5]]}")
if not chunks:
raise ValueError(f"文件 {realpath} 未生成任何文档块")
filename = os.path.basename(realpath).rsplit('.', 1)[0]
upload_time = datetime.now().isoformat()
debug("调用嵌入服务生成向量")
start_embedding = time.time()
texts = [chunk.page_content for chunk in chunks]
embeddings = []
for i in range(0, len(texts), 10): # 每次处理 10 个文本块
batch_texts = texts[i:i + 10]
batch_embeddings = await api_service.get_embeddings(
request=Request,
texts=batch_texts,
upappid=service_params['embedding'],
apiname="BAAI/bge-m3",
user=userid
)
embeddings.extend(batch_embeddings)
if not embeddings or not all(len(vec) == 1024 for vec in embeddings):
raise ValueError("所有嵌入向量必须是长度为 1024 的浮点数列表")
timings["generate_embeddings"] = time.time() - start_embedding
debug(f"生成嵌入向量耗时: {timings['generate_embeddings']:.2f} 秒, 嵌入数量: {len(embeddings)}")
chunks_data = []
for i, chunk in enumerate(chunks):
chunks_data.append({
"userid": orgid,
"knowledge_base_id": fiid,
"text": chunk.page_content,
"vector": embeddings[i],
"document_id": id,
"filename": filename + '.' + ext,
"file_path": realpath,
"upload_time": upload_time,
"file_type": ext,
})
debug(f"调用插入文件端点: {realpath}")
start_milvus = time.time()
for i in range(0, len(chunks_data), 10): # 每次处理 10 条数据
batch_chunks = chunks_data[i:i + 10]
result = await api_service.milvus_insert_document(
request=request,
chunks=batch_chunks,
db_type=db_type,
upappid=service_params['vdb'],
apiname="milvus/insertdocument", # 固定 apiname
user=userid
)
if result.get("status") != "success":
raise ValueError(result.get("message", "Milvus 插入失败"))
timings["insert_milvus"] = time.time() - start_milvus
debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f}")
if result.get("status") != "success":
timings["total"] = time.time() - start_total
return {"status": "error", "document_id": id, "timings": timings,
"message": result.get("message", "未知错误"), "status_code": 400}
debug("调用三元组抽取服务")
start_triples = time.time()
try:
chunk_texts = [doc.page_content for doc in chunks]
debug(f"处理 {len(chunk_texts)} 个分片进行三元组抽取")
tasks = [
api_service.extract_triples(
request=Request,
text=chunk,
upappid=service_params['triples'],
apiname="Babelscape/mrebel-large", # 固定 apiname
user=userid
) for chunk in chunk_texts
]
results = await asyncio.gather(*tasks, return_exceptions=True)
triples = []
for i, result in enumerate(results):
if isinstance(result, list):
triples.extend(result)
debug(f"分片 {i + 1} 抽取到 {len(result)} 个三元组: {result[:5]}")
else:
error(f"分片 {i + 1} 处理失败: {str(result)}")
unique_triples = []
seen = set()
for t in triples:
identifier = (t['head'].lower(), t['tail'].lower(), t['type'].lower())
if identifier not in seen:
seen.add(identifier)
unique_triples.append(t)
else:
for existing in unique_triples:
if (existing['head'].lower() == t['head'].lower() and
existing['tail'].lower() == t['tail'].lower() and
len(t['type']) > len(existing['type'])):
unique_triples.remove(existing)
unique_triples.append(t)
debug(f"替换三元组为更具体类型: {t}")
break
timings["extract_triples"] = time.time() - start_triples
debug(
f"三元组抽取耗时: {timings['extract_triples']:.2f} 秒, 抽取到 {len(unique_triples)} 个三元组: {unique_triples[:5]}")
debug(f"抽取到 {len(unique_triples)} 个三元组,调用 Neo4j 服务插入")
start_neo4j = time.time()
for i in range(0, len(unique_triples), 30): # 每次插入 30 个三元组
batch_triples = unique_triples[i:i + 30]
neo4j_result = await api_service.neo4j_insert_triples(
request=Request,
triples=batch_triples,
document_id=id,
knowledge_base_id=fiid,
userid=orgid,
upappid=service_params['gdb'],
apiname="neo4j/inserttriples", # 固定 apiname
user=userid
)
debug(f"Neo4j 服务响应: {neo4j_result}")
if neo4j_result.get("status") != "success":
timings["insert_neo4j"] = time.time() - start_neo4j
timings["total"] = time.time() - start_total
return {"status": "error", "document_id": id, "collection_name": "ragdb",
"timings": timings,
"message": f"Neo4j 三元组插入失败: {neo4j_result.get('message', '未知错误')}",
"status_code": 400}
info(f"文件 {realpath} 三元组成功插入 Neo4j: {neo4j_result.get('message')}")
else:
debug(f"文件 {realpath} 未抽取到三元组")
timings["insert_neo4j"] = time.time() - start_neo4j
debug(f"Neo4j 插入耗时: {timings['insert_neo4j']:.2f}")
except Exception as e:
timings["extract_triples"] = time.time() - start_triples if "extract_triples" not in timings else \
timings[
"extract_triples"]
timings["insert_neo4j"] = time.time() - start_neo4j
debug(f"处理三元组或 Neo4j 插入失败: {str(e)}, 堆栈: {traceback.format_exc()}")
timings["total"] = time.time() - start_total
return {"status": "success", "document_id": id, "collection_name": "ragdb", "timings": timings,
"unique_triples": unique_triples,
"message": f"文件 {realpath} 成功嵌入,但三元组处理或 Neo4j 插入失败: {str(e)}",
"status_code": 200}
timings["total"] = time.time() - start_total
debug(f"总耗时: {timings['total']:.2f}")
return {"status": "success", "userid": orgid, "document_id": id, "collection_name": "ragdb",
"timings": timings,
"unique_triples": unique_triples, "message": f"文件 {realpath} 成功嵌入并处理三元组",
"status_code": 200}
except Exception as e:
error(f"插入文档失败: {str(e)}, 堆栈: {traceback.format_exc()}")
timings["total"] = time.time() - start_total
return {"status": "error", "document_id": id, "collection_name": "ragdb", "timings": timings,
"message": f"插入文档失败: {str(e)}", "status_code": 400}
async def file_deleted(self, request, recs, userid): async def file_deleted(self, request, recs, userid):
pass """删除用户指定文件数据,包括 Milvus 和 Neo4j 中的记录"""
if not isinstance(recs, list):
recs = [recs] # 确保 recs 是列表,即使传入单个记录
results = []
api_service = APIService()
total_nodes_deleted = 0
total_rels_deleted = 0
for rec in recs:
id = rec.get('id', '')
realpath = rec.get('realpath', '')
fiid = rec.get('fiid', '')
orgid = rec.get('orgid', '')
db_type = ''
collection_name = "ragdb" if not db_type else f"ragdb_{db_type}"
try:
required_fields = ['id', 'realpath', 'fiid', 'orgid']
missing_fields = [field for field in required_fields if not rec.get(field, '')]
if missing_fields:
raise ValueError(f"缺少必填字段: {', '.join(missing_fields)}")
# 获取服务参数
service_params = await self.get_service_params(orgid)
if not service_params:
raise ValueError("无法获取服务参数")
debug(
f"调用删除文件端点: userid={orgid}, file_path={realpath}, knowledge_base_id={fiid}, document_id={id}")
milvus_result = await api_service.milvus_delete_document(
request=request,
userid=orgid,
file_path=realpath,
knowledge_base_id=fiid,
document_id=id,
db_type=db_type,
upappid=service_params['vdb'],
apiname="milvus/deletedocument",
user=userid
)
if milvus_result.get("status") != "success":
raise ValueError(milvus_result.get("message", "Milvus 删除失败"))
neo4j_deleted_nodes = 0
neo4j_deleted_rels = 0
try:
debug(f"调用 Neo4j 删除文档端点: document_id={id}")
neo4j_result = await api_service.neo4j_delete_document(
request=request,
document_id=id,
upappid=service_params['gdb'],
apiname="neo4j/deletedocument",
user=userid
)
if neo4j_result.get("status") != "success":
raise ValueError(neo4j_result.get("message", "Neo4j 删除失败"))
nodes_deleted = neo4j_result.get("nodes_deleted", 0)
rels_deleted = neo4j_result.get("rels_deleted", 0)
neo4j_deleted_nodes += nodes_deleted
neo4j_deleted_rels += rels_deleted
total_nodes_deleted += nodes_deleted
total_rels_deleted += rels_deleted
info(f"成功删除 document_id={id}{nodes_deleted} 个 Neo4j 节点和 {rels_deleted} 个关系")
except Exception as e:
error(f"删除 document_id={id} 的 Neo4j 数据失败: {str(e)}")
results.append({
"status": "success",
"collection_name": collection_name,
"document_id": id,
"message": f"成功删除文件 {realpath} 的 Milvus 记录,{neo4j_deleted_nodes} 个 Neo4j 节点,{neo4j_deleted_rels} 个 Neo4j 关系",
"status_code": 200
})
except Exception as e:
error(f"删除文档 {realpath} 失败: {str(e)}, 堆栈: {traceback.format_exc()}")
results.append({
"status": "error",
"collection_name": collection_name,
"document_id": id,
"message": f"删除文档 {realpath} 失败: {str(e)}",
"status_code": 400
})
return {
"status": "success" if all(r["status"] == "success" for r in results) else "partial",
"results": results,
"total_nodes_deleted": total_nodes_deleted,
"total_rels_deleted": total_rels_deleted,
"message": f"处理 {len(recs)} 个文件,成功删除 {sum(1 for r in results if r['status'] == 'success')}",
"status_code": 200 if all(r["status"] == "success" for r in results) else 207
}
async def test_ragfilemgr():
"""测试 RagFileMgr 类的 get_service_params"""
print("初始化数据库连接池...")
dbs = {
"kyrag": {
"driver": "aiomysql",
"async_mode": True,
"coding": "utf8",
"maxconn": 100,
"dbname": "kyrag",
"kwargs": {
"user": "test",
"db": "kyrag",
"password": "QUZVcXg5V1p1STMybG5Ia6mX9D0v7+g=",
"host": "db"
}
}
}
DBPools(dbs)
ragfilemgr = RagFileMgr()
orgid = "04J6VbxLqB_9RPMcgOv_8"
result = await ragfilemgr.get_service_params(orgid)
print(f"get_service_params 结果: {result}")
if __name__ == "__main__":
asyncio.run(test_ragfilemgr())
## usage ## usage
# mgr = RagFileMgr(fiid) # mgr = RagFileMgr(fiid)

315
rag/uapi_service.py Normal file
View File

@ -0,0 +1,315 @@
from appPublic.log import debug, error
from typing import Dict, Any, List
import uuid
from ahserver.serverenv import ServerEnv
from uapi.init import load_uapi
load_uapi()
class APIService:
"""处理 API 请求的服务类"""
# 嵌入服务 (BAAI/bge-m3)
async def get_embeddings(self, request, texts: list, upappid: str, apiname: str, user: str) -> list:
"""调用嵌入服务获取文本向量"""
try:
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"input": texts}
d = await uapi.request(upappid, apiname, user, params_kw)
if d.get("object") != "list" or not d.get("data"):
error(f"嵌入服务响应格式错误: {d}")
raise RuntimeError("嵌入服务响应格式错误")
embeddings = [item["embedding"] for item in d["data"]]
debug(f"成功获取 {len(embeddings)} 个嵌入向量")
return embeddings
except Exception as e:
error(f"嵌入服务调用失败: {str(e)}")
raise RuntimeError(f"嵌入服务调用失败: {str(e)}")
# 实体提取服务 (LTP/small)
async def extract_entities(self, request, query: str, upappid: str, apiname: str, user: str) -> list:
"""调用实体识别服务"""
try:
if not query:
raise ValueError("查询文本不能为空")
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"query": query}
d = await uapi.request(upappid, apiname, user, params_kw)
if d.get("object") != "list" or not d.get("data"):
error(f"实体识别服务响应格式错误: {d}")
raise RuntimeError("实体识别服务响应格式错误")
entities = d["data"]
unique_entities = list(dict.fromkeys(entities))
debug(f"成功提取 {len(unique_entities)} 个唯一实体")
return unique_entities
except Exception as e:
error(f"实体识别服务调用失败: {str(e)}")
return []
# 三元组抽取服务 (Babelscape/mrebel-large)
async def extract_triples(self, request, text: str, upappid: str, apiname: str, user: str) -> list:
"""调用三元组抽取服务"""
request_id = str(uuid.uuid4())
debug(f"Request #{request_id} started for triples extraction")
try:
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"text": text}
d = await uapi.request(upappid, apiname, user, params_kw)
if d.get("object") != "list":
error(f"Request #{request_id} invalid response format: {d}")
raise RuntimeError("三元组抽取服务响应格式错误")
triples = d["data"]
debug(f"Request #{request_id} extracted {len(triples)} triples")
return triples
except Exception as e:
error(f"Request #{request_id} failed to extract triples: {str(e)}")
raise RuntimeError(f"三元组抽取服务调用失败: {str(e)}")
# 重排序服务 (BAAI/bge-reranker-v2-m3)
async def rerank_results(self, request, query: str, results: list, top_n: int, upappid: str, apiname: str, user: str) -> list:
"""调用重排序服务"""
try:
if not results:
debug("无结果需要重排序")
return results
if not isinstance(top_n, int) or top_n < 1:
debug(f"无效的 top_n 参数: {top_n}, 使用 len(results)={len(results)}")
top_n = len(results)
else:
top_n = min(top_n, len(results))
documents = [result.get("text", str(result)) for result in results]
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"model": "rerank-001",
"query": query,
"documents": documents,
"top_n": top_n
}
d = await uapi.request(upappid, apiname, user, params_kw)
if d.get("object") != "rerank.result" or not d.get("data"):
error(f"重排序服务响应格式错误: {d}")
raise RuntimeError("重排序服务响应格式错误")
rerank_data = d["data"]
reranked_results = []
for item in rerank_data:
index = item["index"]
if index < len(results):
results[index]["rerank_score"] = item["relevance_score"]
reranked_results.append(results[index])
debug(f"成功重排序 {len(reranked_results)} 条结果")
return reranked_results[:top_n]
except Exception as e:
error(f"重排序服务调用失败: {str(e)}")
return results
# Neo4j 服务
async def neo4j_docs(self, request, upappid: str, apiname: str, user: str) -> str:
"""获取 Neo4j 文档(返回文本格式)"""
try:
uapi = UAPI(request, DictObject(**globals()))
params_kw = {}
d = await uapi.request(upappid, apiname, user, params_kw)
if d.get("status") != 200:
error(f"Neo4j 文档请求失败,状态码: {d.get('status')}")
raise RuntimeError(f"Neo4j 文档请求失败: {d.get('status')}")
text = d.get("text")
debug(f"Neo4j 文档内容: {text}")
return text
except Exception as e:
error(f"Neo4j 文档请求失败: {str(e)}")
raise RuntimeError(f"Neo4j 文档请求失败: {str(e)}")
async def neo4j_initialize(self, request, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""初始化 Neo4j 服务"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {}
return await uapi.request(upappid, apiname, user, params_kw)
async def neo4j_insert_triples(self, request, triples: list, document_id: str, knowledge_base_id: str, userid: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""插入三元组到 Neo4j"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"triples": triples,
"document_id": document_id,
"knowledge_base_id": knowledge_base_id,
"userid": userid
}
return await uapi.request(upappid, apiname, user, params_kw)
async def neo4j_delete_document(self, request, document_id: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""删除指定文档"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"document_id": document_id}
return await uapi.request(upappid, apiname, user, params_kw)
async def neo4j_delete_knowledgebase(self, request, userid: str, knowledge_base_id: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""删除用户知识库"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"userid": userid, "knowledge_base_id": knowledge_base_id}
return await uapi.request(upappid, apiname, user, params_kw)
async def neo4j_match_triplets(self, request, query: str, query_entities: list, userid: str, knowledge_base_id: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""根据实体匹配相关三元组"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"query": query,
"query_entities": query_entities,
"userid": userid,
"knowledge_base_id": knowledge_base_id
}
return await uapi.request(upappid, apiname, user, params_kw)
# Milvus 服务
async def milvus_create_collection(self, request, upappid: str, apiname: str, user: str, db_type: str = "") -> Dict[str, Any]:
"""创建 Milvus 集合"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"db_type": db_type}
return await uapi.request(upappid, apiname, user, params_kw)
async def milvus_delete_collection(self, request, upappid: str, apiname: str, user: str, db_type: str = "") -> Dict[str, Any]:
"""删除 Milvus 集合"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"db_type": db_type}
return await uapi.request(upappid, apiname, user, params_kw)
async def milvus_insert_document(self, request, chunks: List[Dict], upappid: str, apiname: str, user: str, db_type: str = "") -> Dict[str, Any]:
"""添加 Milvus 记录"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"chunks": chunks,
"dbtype": db_type
}
payload = json.dumps(params_kw) # 转换为 JSON 字符串
payload_bytes = payload.encode() # 编码为字节
payload_size = len(payload_bytes) # 获取字节数
debug(f"Request payload size for insertdocument: {payload_size} bytes")
return await uapi.request(upappid, apiname, user, params_kw)
async def milvus_delete_document(self, request, userid: str, file_path: str, knowledge_base_id: str, document_id: str, upappid: str, apiname: str, user: str, db_type: str = "") -> Dict[str, Any]:
"""删除 Milvus 记录"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"userid": userid,
"file_path": file_path,
"knowledge_base_id": knowledge_base_id,
"document_id": document_id,
"dbtype": db_type
}
return await uapi.request(upappid, apiname, user, params_kw)
async def milvus_delete_knowledgebase(self, request, userid: str, knowledge_base_id: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""删除 Milvus 知识库"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"userid": userid, "knowledge_base_id": knowledge_base_id}
return await uapi.request(upappid, apiname, user, params_kw)
async def milvus_search_query(self, request, query_vector: List[float], userid: str, knowledge_base_ids: list, limit: int, offset: int, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""根据用户知识库检索 Milvus"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"query_vector": query_vector,
"userid": userid,
"knowledge_base_ids": knowledge_base_ids,
"limit": limit,
"offset": offset
}
return await uapi.request(upappid, apiname, user, params_kw)
async def milvus_list_user_files(self, request, userid: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""列出 Milvus 用户知识库列表"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"userid": userid}
return await uapi.request(upappid, apiname, user, params_kw)
async def milvus_list_all_knowledgebases(self, request, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""列出 Milvus 数据库中所有数据"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {}
return await uapi.request(upappid, apiname, user, params_kw)
# RAG 服务
async def rag_create_collection(self, request, upappid: str, apiname: str, user: str, db_type: str = "") -> Dict[str, Any]:
"""创建 RAG 集合"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"db_type": db_type}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_delete_collection(self, request, upappid: str, apiname: str, user: str, db_type: str = "") -> Dict[str, Any]:
"""删除 RAG 集合"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"db_type": db_type}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_insert_file(self, request, file_path: str, userid: str, knowledge_base_id: str, document_id: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""添加 RAG 记录"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"file_path": file_path,
"userid": userid,
"knowledge_base_id": knowledge_base_id,
"document_id": document_id
}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_delete_file(self, request, userid: str, file_path: str, knowledge_base_id: str, document_id: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""删除 RAG 记录"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"userid": userid,
"file_path": file_path,
"knowledge_base_id": knowledge_base_id,
"document_id": document_id
}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_delete_knowledgebase(self, request, userid: str, knowledge_base_id: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""删除 RAG 知识库"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"userid": userid, "knowledge_base_id": knowledge_base_id}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_search_query(self, request, query: str, userid: str, knowledge_base_ids: list, limit: int, offset: int, use_rerank: bool, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""根据用户知识库检索 RAG"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"query": query,
"userid": userid,
"knowledge_base_ids": knowledge_base_ids,
"limit": limit,
"offset": offset,
"use_rerank": use_rerank
}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_fused_search_query(self, request, query: str, userid: str, knowledge_base_ids: list, limit: int, offset: int, use_rerank: bool, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""根据用户知识库+知识图谱检索 RAG"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {
"query": query,
"userid": userid,
"knowledge_base_ids": knowledge_base_ids,
"limit": limit,
"offset": offset,
"use_rerank": use_rerank
}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_list_user_files(self, request, userid: str, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""列出 RAG 用户知识库列表"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"userid": userid}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_list_all_knowledgebases(self, request, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""列出 RAG 数据库中所有数据"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {}
return await uapi.request(upappid, apiname, user, params_kw)
async def rag_docs(self, request, upappid: str, apiname: str, user: str) -> Dict[str, Any]:
"""获取 RAG 帮助文档"""
uapi = UAPI(request, DictObject(**globals()))
params_kw = {}
return await uapi.request(upappid, apiname, user, params_kw)