This commit is contained in:
wangmeihua 2025-09-12 15:34:36 +08:00
parent e590c1084f
commit b6d3f39081
3 changed files with 352 additions and 308 deletions

View File

@ -14,7 +14,7 @@ import time
import uuid
from datetime import datetime
import traceback
from filetxt.loader import fileloader
from filetxt.loader import fileloader,File2Text
from ahserver.serverenv import get_serverenv
from typing import List, Dict, Any
from rag.service_opts import get_service_params, sor_get_service_params
@ -44,6 +44,206 @@ where a.orgid = b.orgid
return r.quota, r.expired_date
return None, None
async def get_doucment_chunks(self, realpath, timings):
"""加载文件并进行文本分片"""
debug(f"加载文件: {realpath}")
start_load = time.time()
supported_formats = File2Text.supported_types()
debug(f"支持的文件格式:{supported_formats}")
ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else ''
if ext not in supported_formats:
raise ValueError(f"不支持的文件格式: {ext}, 支持的格式: {', '.join(supported_formats)}")
text = fileloader(realpath)
text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n/]', '', text)
timings["load_file"] = time.time() - start_load
debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}")
if not text or not text.strip():
raise ValueError(f"文件 {realpath} 加载为空")
document = Document(page_content=text)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
length_function=len
)
debug("开始分片文件内容")
start_split = time.time()
chunks = text_splitter.split_documents([document])
timings["split_text"] = time.time() - start_split
debug(f"文本分片耗时: {timings['split_text']:.2f} 秒, 分片数量: {len(chunks)}")
if not chunks:
raise ValueError(f"文件 {realpath} 未生成任何文档块")
return chunks
async def docs_embedding(self, request, chunks, service_params, userid, timings):
"""调用嵌入服务生成向量"""
debug("调用嵌入服务生成向量")
start_embedding = time.time()
texts = [chunk.page_content for chunk in chunks]
embeddings = []
for i in range(0, len(texts), 10):
batch_texts = texts[i:i + 10]
batch_embeddings = await APIService().get_embeddings(
request=request,
texts=batch_texts,
upappid=service_params['embedding'],
apiname="BAAI/bge-m3",
user=userid
)
embeddings.extend(batch_embeddings)
if not embeddings or not all(len(vec) == 1024 for vec in embeddings):
raise ValueError("所有嵌入向量必须是长度为 1024 的浮点数列表")
timings["generate_embeddings"] = time.time() - start_embedding
debug(f"生成嵌入向量耗时: {timings['generate_embeddings']:.2f} 秒, 嵌入数量: {len(embeddings)}")
return embeddings
async def embedding_2_vdb(self, request, chunks, embeddings, realpath, orgid, fiid, id, service_params, userid,
db_type, timings):
"""准备数据并插入 Milvus"""
debug(f"准备数据并调用插入文件端点: {realpath}")
filename = os.path.basename(realpath).rsplit('.', 1)[0]
ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else ''
upload_time = datetime.now().isoformat()
chunks_data = [
{
"userid": orgid,
"knowledge_base_id": fiid,
"text": chunk.page_content,
"vector": embeddings[i],
"document_id": id,
"filename": filename + '.' + ext,
"file_path": realpath,
"upload_time": upload_time,
"file_type": ext,
}
for i, chunk in enumerate(chunks)
]
start_milvus = time.time()
for i in range(0, len(chunks_data), 10):
batch_chunks = chunks_data[i:i + 10]
result = await APIService().milvus_insert_document(
request=request,
chunks=batch_chunks,
db_type=db_type,
upappid=service_params['vdb'],
apiname="milvus/insertdocument",
user=userid
)
if result.get("status") != "success":
raise ValueError(result.get("message", "Milvus 插入失败"))
timings["insert_milvus"] = time.time() - start_milvus
debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f}")
return chunks_data
async def get_triples(self, request, chunks, service_params, userid, timings):
"""调用三元组抽取服务"""
debug("调用三元组抽取服务")
start_triples = time.time()
chunk_texts = [doc.page_content for doc in chunks]
triples = []
for i, chunk in enumerate(chunk_texts):
result = await APIService().extract_triples(
request=request,
text=chunk,
upappid=service_params['triples'],
apiname="Babelscape/mrebel-large",
user=userid
)
if isinstance(result, list):
triples.extend(result)
debug(f"分片 {i + 1} 抽取到 {len(result)} 个三元组")
else:
error(f"分片 {i + 1} 处理失败: {str(result)}")
unique_triples = []
seen = set()
for t in triples:
identifier = (t['head'].lower(), t['tail'].lower(), t['type'].lower())
if identifier not in seen:
seen.add(identifier)
unique_triples.append(t)
else:
for existing in unique_triples:
if (existing['head'].lower() == t['head'].lower() and
existing['tail'].lower() == t['tail'].lower() and
len(t['type']) > len(existing['type'])):
unique_triples.remove(existing)
unique_triples.append(t)
debug(f"替换三元组为更具体类型: {t}")
break
timings["extract_triples"] = time.time() - start_triples
debug(f"三元组抽取耗时: {timings['extract_triples']:.2f} 秒, 抽取到 {len(unique_triples)} 个三元组")
return unique_triples
async def triple2graphdb(self, request, unique_triples, id, fiid, orgid, service_params, userid, timings):
"""调用 Neo4j 插入三元组"""
debug(f"插入 {len(unique_triples)} 个三元组到 Neo4j")
start_neo4j = time.time()
if unique_triples:
for i in range(0, len(unique_triples), 30):
batch_triples = unique_triples[i:i + 30]
neo4j_result = await APIService().neo4j_insert_triples(
request=request,
triples=batch_triples,
document_id=id,
knowledge_base_id=fiid,
userid=orgid,
upappid=service_params['gdb'],
apiname="neo4j/inserttriples",
user=userid
)
if neo4j_result.get("status") != "success":
raise ValueError(f"Neo4j 三元组插入失败: {neo4j_result.get('message', '未知错误')}")
info(f"文件三元组成功插入 Neo4j: {neo4j_result.get('message')}")
timings["insert_neo4j"] = time.time() - start_neo4j
debug(f"Neo4j 插入耗时: {timings['insert_neo4j']:.2f}")
else:
debug("未抽取到三元组")
timings["insert_neo4j"] = 0.0
async def delete_from_milvus(self, request, orgid, realpath, fiid, id, service_params, userid, db_type):
"""调用 Milvus 删除文档"""
debug(f"调用删除文件端点: userid={orgid}, file_path={realpath}, knowledge_base_id={fiid}, document_id={id}")
milvus_result = await APIService().milvus_delete_document(
request=request,
userid=orgid,
file_path=realpath,
knowledge_base_id=fiid,
document_id=id,
db_type=db_type,
upappid=service_params['vdb'],
apiname="milvus/deletedocument",
user=userid
)
if milvus_result.get("status") != "success":
raise ValueError(milvus_result.get("message", "Milvus 删除失败"))
async def delete_from_neo4j(self, request, id, service_params, userid):
"""调用 Neo4j 删除文档"""
debug(f"调用 Neo4j 删除文档端点: document_id={id}")
neo4j_result = await APIService().neo4j_delete_document(
request=request,
document_id=id,
upappid=service_params['gdb'],
apiname="neo4j/deletedocument",
user=userid
)
if neo4j_result.get("status") != "success":
raise ValueError(neo4j_result.get("message", "Neo4j 删除失败"))
nodes_deleted = neo4j_result.get("nodes_deleted", 0)
rels_deleted = neo4j_result.get("rels_deleted", 0)
info(f"成功删除 document_id={id}{nodes_deleted} 个 Neo4j 节点和 {rels_deleted} 个关系")
return nodes_deleted, rels_deleted
async def file_uploaded(self, request, ns, userid):
"""将文档插入 Milvus 并抽取三元组到 Neo4j"""
debug(f'Received ns: {ns=}')
@ -52,23 +252,13 @@ where a.orgid = b.orgid
fiid = ns.get('fiid', '')
id = ns.get('id', '')
orgid = ns.get('ownerid', '')
hashvalue = ns.get('hashvalue', '')
db_type = ''
api_service = APIService()
debug(
f'Inserting document: file_path={realpath}, userid={orgid}, db_type={db_type}, knowledge_base_id={fiid}, document_id={id}')
debug(f'Inserting document: file_path={realpath}, userid={orgid}, db_type={db_type}, knowledge_base_id={fiid}, document_id={id}')
timings = {}
start_total = time.time()
service_params = await get_service_params(orgid)
chunks = await self.get_doucment_chunks(realpath)
embeddings = await self.docs_embedding(chunks)
await self.embedding_2_vdb(id, fiid, orgid, realpath, embedding)
triples = await self.get_triples(chunks)
await self.triple2graphdb(id, fiid, orgid, realpath, triples)
return
try:
if not orgid or not fiid or not id:
raise ValueError("orgid、fiid 和 id 不能为空")
@ -82,217 +272,41 @@ where a.orgid = b.orgid
if not service_params:
raise ValueError("无法获取服务参数")
supported_formats = {'pdf', 'docx', 'xlsx', 'pptx', 'csv', 'txt'}
ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else ''
if ext not in supported_formats:
raise ValueError(f"不支持的文件格式: {ext}, 支持的格式: {', '.join(supported_formats)}")
debug(f"加载文件: {realpath}")
start_load = time.time()
text = fileloader(realpath)
# debug(f"处理后的文件内容是:{text=}")
text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n/]', '', text)
timings["load_file"] = time.time() - start_load
debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}")
if not text or not text.strip():
raise ValueError(f"文件 {realpath} 加载为空")
document = Document(page_content=text)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100,
length_function=len)
debug("开始分片文件内容")
start_split = time.time()
chunks = text_splitter.split_documents([document])
timings["split_text"] = time.time() - start_split
debug(
f"文本分片耗时: {timings['split_text']:.2f} 秒, 分片数量: {len(chunks)}, 分片内容: {[chunk.page_content[:50] for chunk in chunks[:5]]}")
debug(f"分片内容: {[chunk.page_content[:100] + '...' for chunk in chunks]}")
if not chunks:
raise ValueError(f"文件 {realpath} 未生成任何文档块")
filename = os.path.basename(realpath).rsplit('.', 1)[0]
upload_time = datetime.now().isoformat()
debug("调用嵌入服务生成向量")
start_embedding = time.time()
texts = [chunk.page_content for chunk in chunks]
embeddings = []
for i in range(0, len(texts), 10): # 每次处理 10 个文本块
batch_texts = texts[i:i + 10]
batch_embeddings = await api_service.get_embeddings(
request=request,
texts=batch_texts,
upappid=service_params['embedding'],
apiname="BAAI/bge-m3",
user=userid
)
embeddings.extend(batch_embeddings)
if not embeddings or not all(len(vec) == 1024 for vec in embeddings):
raise ValueError("所有嵌入向量必须是长度为 1024 的浮点数列表")
timings["generate_embeddings"] = time.time() - start_embedding
debug(f"生成嵌入向量耗时: {timings['generate_embeddings']:.2f} 秒, 嵌入数量: {len(embeddings)}")
chunks_data = []
for i, chunk in enumerate(chunks):
chunks_data.append({
"userid": orgid,
"knowledge_base_id": fiid,
"text": chunk.page_content,
"vector": embeddings[i],
"document_id": id,
"filename": filename + '.' + ext,
"file_path": realpath,
"upload_time": upload_time,
"file_type": ext,
})
debug(f"调用插入文件端点: {realpath}")
start_milvus = time.time()
for i in range(0, len(chunks_data), 10): # 每次处理 10 条数据
batch_chunks = chunks_data[i:i + 10]
result = await api_service.milvus_insert_document(
request=request,
chunks=batch_chunks,
db_type=db_type,
upappid=service_params['vdb'],
apiname="milvus/insertdocument",
user=userid
)
if result.get("status") != "success":
raise ValueError(result.get("message", "Milvus 插入失败"))
timings["insert_milvus"] = time.time() - start_milvus
debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f}")
if result.get("status") != "success":
timings["total"] = time.time() - start_total
return {"status": "error", "document_id": id, "timings": timings,
"message": result.get("message", "未知错误"), "status_code": 400}
debug("调用三元组抽取服务")
start_triples = time.time()
unique_triples = []
try:
chunk_texts = [doc.page_content for doc in chunks]
debug(f"处理 {len(chunk_texts)} 个分片进行三元组抽取")
triples = []
for i, chunk in enumerate(chunk_texts):
result = await api_service.extract_triples(
request=request,
text=chunk,
upappid=service_params['triples'],
apiname="Babelscape/mrebel-large",
user=userid
)
if isinstance(result, list):
triples.extend(result)
debug(f"分片 {i + 1} 抽取到 {len(result)} 个三元组: {result[:5]}")
else:
error(f"分片 {i + 1} 处理失败: {str(result)}")
seen = set()
for t in triples:
identifier = (t['head'].lower(), t['tail'].lower(), t['type'].lower())
if identifier not in seen:
seen.add(identifier)
unique_triples.append(t)
else:
for existing in unique_triples:
if (existing['head'].lower() == t['head'].lower() and
existing['tail'].lower() == t['tail'].lower() and
len(t['type']) > len(existing['type'])):
unique_triples.remove(existing)
unique_triples.append(t)
debug(f"替换三元组为更具体类型: {t}")
break
timings["extract_triples"] = time.time() - start_triples
debug(
f"三元组抽取耗时: {timings['extract_triples']:.2f} 秒, 抽取到 {len(unique_triples)} 个三元组: {unique_triples[:5]}")
if unique_triples:
debug(f"抽取到 {len(unique_triples)} 个三元组,调用 Neo4j 服务插入")
start_neo4j = time.time()
for i in range(0, len(unique_triples), 30): # 每次插入 30 个三元组
batch_triples = unique_triples[i:i + 30]
neo4j_result = await api_service.neo4j_insert_triples(
request=request,
triples=batch_triples,
document_id=id,
knowledge_base_id=fiid,
userid=orgid,
upappid=service_params['gdb'],
apiname="neo4j/inserttriples",
user=userid
)
debug(f"Neo4j 服务响应: {neo4j_result}")
if neo4j_result.get("status") != "success":
timings["insert_neo4j"] = time.time() - start_neo4j
timings["total"] = time.time() - start_total
return {
"status": "error",
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"message": f"Neo4j 三元组插入失败: {neo4j_result.get('message', '未知错误')}",
"status_code": 400
}
info(f"文件 {realpath} 三元组成功插入 Neo4j: {neo4j_result.get('message')}")
timings["insert_neo4j"] = time.time() - start_neo4j
debug(f"Neo4j 插入耗时: {timings['insert_neo4j']:.2f}")
else:
debug(f"文件 {realpath} 未抽取到三元组")
timings["insert_neo4j"] = 0.0
except Exception as e:
timings["extract_triples"] = time.time() - start_triples if "extract_triples" not in timings else \
timings["extract_triples"]
timings["insert_neo4j"] = time.time() - start_neo4j if "insert_neo4j" not in timings else timings[
"insert_neo4j"]
debug(f"处理三元组或 Neo4j 插入失败: {str(e)}, 堆栈: {traceback.format_exc()}")
timings["total"] = time.time() - start_total
return {
"status": "success",
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"unique_triples": unique_triples,
"message": f"文件 {realpath} 成功嵌入,但三元组处理或 Neo4j 插入失败: {str(e)}",
"status_code": 200
}
chunks = await self.get_doucment_chunks(realpath, timings)
embeddings = await self.docs_embedding(request, chunks, service_params, userid, timings)
await self.embedding_2_vdb(request, chunks, embeddings, realpath, orgid, fiid, id, service_params, userid,db_type, timings)
triples = await self.get_triples(request, chunks, service_params, userid, timings)
await self.triple2graphdb(request, triples, id, fiid, orgid, service_params, userid, timings)
timings["total"] = time.time() - start_total
debug(f"总耗时: {timings['total']:.2f}")
return {
"status": "success",
"userid": orgid,
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"unique_triples": unique_triples,
"message": f"文件 {realpath} 成功嵌入并处理三元组",
"status_code": 200
"status": "success",
"userid": orgid,
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"unique_triples": triples,
"message": f"文件 {realpath} 成功嵌入并处理三元组",
"status_code": 200
}
except Exception as e:
error(f"插入文档失败: {str(e)}, 堆栈: {traceback.format_exc()}")
timings["total"] = time.time() - start_total
return {
"status": "error",
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"message": f"插入文档失败: {str(e)}",
"status_code": 400
"status": "error",
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"message": f"插入文档失败: {str(e)}",
"status_code": 400
}
async def file_deleted(self, request, recs, userid):
"""删除用户指定文件数据,包括 Milvus 和 Neo4j 中的记录"""
if not isinstance(recs, list):
recs = [recs] # 确保 recs 是列表,即使传入单个记录
recs = [recs]
results = []
api_service = APIService()
total_nodes_deleted = 0
total_rels_deleted = 0
@ -310,46 +324,24 @@ where a.orgid = b.orgid
if missing_fields:
raise ValueError(f"缺少必填字段: {', '.join(missing_fields)}")
# 获取服务参数
service_params = await get_service_params(orgid)
if not service_params:
raise ValueError("无法获取服务参数")
debug(f"调用删除文件端点: userid={orgid}, file_path={realpath}, knowledge_base_id={fiid}, document_id={id}")
milvus_result = await api_service.milvus_delete_document(
request=request,
userid=orgid,
file_path=realpath,
knowledge_base_id=fiid,
document_id=id,
db_type=db_type,
upappid=service_params['vdb'],
apiname="milvus/deletedocument",
user=userid
)
if milvus_result.get("status") != "success":
raise ValueError(milvus_result.get("message", "Milvus 删除失败"))
# 调用 Milvus 删除
await self.delete_from_milvus(request, orgid, realpath, fiid, id, service_params, userid, db_type)
# 调用 Neo4j 删除
neo4j_deleted_nodes = 0
neo4j_deleted_rels = 0
debug(f"调用 Neo4j 删除文档端点: document_id={id}")
neo4j_result = await api_service.neo4j_delete_document(
request=request,
document_id=id,
upappid=service_params['gdb'],
apiname="neo4j/deletedocument",
user=userid
)
if neo4j_result.get("status") != "success":
raise ValueError(neo4j_result.get("message", "Neo4j 删除失败"))
nodes_deleted = neo4j_result.get("nodes_deleted", 0)
rels_deleted = neo4j_result.get("rels_deleted", 0)
neo4j_deleted_nodes += nodes_deleted
neo4j_deleted_rels += rels_deleted
total_nodes_deleted += nodes_deleted
total_rels_deleted += rels_deleted
info(f"成功删除 document_id={id}{nodes_deleted} 个 Neo4j 节点和 {rels_deleted} 个关系")
try:
nodes_deleted, rels_deleted = await self.delete_from_neo4j(request, id, service_params, userid)
neo4j_deleted_nodes += nodes_deleted
neo4j_deleted_rels += rels_deleted
total_nodes_deleted += nodes_deleted
total_rels_deleted += rels_deleted
except Exception as e:
error(f"删除 document_id={id} 的 Neo4j 数据失败: {str(e)}")
results.append({
"status": "success",
@ -361,13 +353,13 @@ where a.orgid = b.orgid
except Exception as e:
error(f"删除文档 {realpath} 失败: {str(e)}, 堆栈: {traceback.format_exc()}")
results.append({
"status": "error",
"collection_name": collection_name,
"document_id": id,
"message": f"删除文档 {realpath} 失败: {str(e)}",
"status_code": 400
})
results.append({
"status": "error",
"collection_name": collection_name,
"document_id": id,
"message": f"删除文档 {realpath} 失败: {str(e)}",
"status_code": 400
})
return {
"status": "success" if all(r["status"] == "success" for r in results) else "partial",
@ -378,31 +370,31 @@ where a.orgid = b.orgid
"status_code": 200 if all(r["status"] == "success" for r in results) else 207
}
async def test_ragfilemgr():
"""测试 RagFileMgr 类的 get_service_params"""
print("初始化数据库连接池...")
dbs = {
"kyrag": {
"driver": "aiomysql",
"async_mode": True,
"coding": "utf8",
"maxconn": 100,
"dbname": "kyrag",
"kwargs": {
"user": "test",
"db": "kyrag",
"password": "QUZVcXg5V1p1STMybG5Ia6mX9D0v7+g=",
"host": "db"
}
}
}
DBPools(dbs)
ragfilemgr = RagFileMgr()
orgid = "04J6VbxLqB_9RPMcgOv_8"
result = await ragfilemgr.get_service_params(orgid)
print(f"get_service_params 结果: {result}")
if __name__ == "__main__":
asyncio.run(test_ragfilemgr())
# async def test_ragfilemgr():
# """测试 RagFileMgr 类的 get_service_params"""
# print("初始化数据库连接池...")
# dbs = {
# "kyrag": {
# "driver": "aiomysql",
# "async_mode": True,
# "coding": "utf8",
# "maxconn": 100,
# "dbname": "kyrag",
# "kwargs": {
# "user": "test",
# "db": "kyrag",
# "password": "QUZVcXg5V1p1STMybG5Ia6mX9D0v7+g=",
# "host": "db"
# }
# }
# }
# DBPools(dbs)
#
# ragfilemgr = RagFileMgr()
# orgid = "04J6VbxLqB_9RPMcgOv_8"
# result = await get_service_params(orgid)
# print(f"get_service_params 结果: {result}")
#
#
# if __name__ == "__main__":
# asyncio.run(test_ragfilemgr())

View File

@ -1,11 +1,11 @@
from rag.uapi_service import APIService
from rag.folderinfo import RagFileMgr
from sqlor.dbpools import DBPools
from appPublic.log import debug, error, info
import time
import traceback
import json
import math
from rag.service_opts import get_service_params, sor_get_service_params
helptext = """kyrag API:
@ -82,7 +82,7 @@ async def fusedsearch(request, params_kw, *params, **kw):
# orgid = "04J6VbxLqB_9RPMcgOv_8"
# userid = "04J6VbxLqB_9RPMcgOv_8"
query = params_kw.get('query', '')
# 统一模式处理 limit 参数
# 统一模式处理 limit 参数,为了对接dify和coze
raw_limit = params_kw.get('limit') or (
params_kw.get('retrieval_setting', {}).get('top_k')
if isinstance(params_kw.get('retrieval_setting'), dict)
@ -103,7 +103,7 @@ async def fusedsearch(request, params_kw, *params, **kw):
else:
limit = 5 # 其他意外类型使用默认值
debug(f"limit: {limit}")
raw_fiids = params_kw.get('fiids') or params_kw.get('knowledge_id')
raw_fiids = params_kw.get('fiids') or params_kw.get('knowledge_id') #
# 标准化为列表格式
if raw_fiids is None:
@ -111,8 +111,18 @@ async def fusedsearch(request, params_kw, *params, **kw):
elif isinstance(raw_fiids, list):
fiids = [str(item).strip() for item in raw_fiids] # 已经是列表
elif isinstance(raw_fiids, str):
# 处理逗号分隔的字符串或单个ID字符串
fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()]
# fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()]
try:
# 尝试解析 JSON 字符串
parsed = json.loads(raw_fiids)
if isinstance(parsed, list):
fiids = [str(item).strip() for item in parsed] # JSON 数组转为字符串列表
else:
# 处理逗号分隔的字符串或单个 ID 字符串
fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()]
except json.JSONDecodeError:
# 如果不是合法 JSON按逗号分隔
fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()]
elif isinstance(raw_fiids, (int, float)):
fiids = [str(int(raw_fiids))] # 数值类型转为字符串列表
else:
@ -140,8 +150,7 @@ async def fusedsearch(request, params_kw, *params, **kw):
except Exception as e:
error(f"orgid 验证失败: {str(e)}")
return json.dumps({"status": "error", "message": str(e)})
ragfilemgr = RagFileMgr("fiids[0]")
service_params = await ragfilemgr.get_service_params(orgid)
service_params = await get_service_params(orgid)
api_service = APIService()
start_time = time.time()
@ -276,9 +285,19 @@ async def fusedsearch(request, params_kw, *params, **kw):
timing_stats["total_time"] = time.time() - start_time
info(f"融合搜索完成,返回 {len(unique_results)} 条结果,总耗时: {timing_stats['total_time']:.3f}")
# debug(f"results: {unique_results[:limit]},timing: {timing_stats}")
# return {"results": unique_results[:limit], "timing": timing_stats}
# dify_result = []
# for res in unique_results[:limit]:
# content = res.get('text', '')
# title = res.get('metadata', {}).get('filename', 'Untitled')
# document_id = res.get('metadata', {}).get('document_id', '')
# dify_result.append({
# 'metadata': {'document_id': document_id},
# 'title': title,
# 'content': content
# })
# info(f"融合搜索完成,返回 {len(dify_result)} 条结果,总耗时: {(time.time() - start_time):.3f} 秒")
# debug(f"result: {dify_result}")
# return dify_result
dify_records = []
dify_result = []
@ -291,18 +310,50 @@ async def fusedsearch(request, params_kw, *params, **kw):
document_id = res.get('metadata', {}).get('document_id', '')
dify_records.append({
"content": content,
"score": score,
"title": title
"title": title,
"metadata": {"document_id": document_id, "score": score},
})
dify_result.append({
"content": content,
"title": title,
"metadata": {"document_id": document_id}
"metadata": {"document_id": document_id, "score": score},
})
info(f"融合搜索完成,返回 {len(dify_records)} 条结果,总耗时: {(time.time() - start_time):.3f}")
debug(f"records: {dify_records}, result: {dify_result}")
return {"records": dify_records, "result": dify_result, "own":{"results": unique_results[:limit], "timing": timing_stats}}
# return {"records": dify_records, "result": dify_result,"own": {"results": unique_results[:limit], "timing": timing_stats}}
return {"records": dify_records}
# dify_result = []
# for res in unique_results[:limit]:
# rerank_score = res.get('rerank_score', 0)
# score = 1 / (1 + math.exp(-rerank_score)) if rerank_score is not None else 1 - res.get('distance', 0)
# score = max(0.0, min(1.0, score))
# content = res.get('text', '')
# title = res.get('metadata', {}).get('filename', 'Untitled')
# document_id = res.get('metadata', {}).get('document_id', '')
# dify_result.append({
# "metadata": {
# "_source": "konwledge",
# "dataset_id":"111111",
# "dataset_name": "NVIDIA_GPU性能参数-RAG-V1.xlsx",
# "document_id": document_id,
# "document_name": "test.docx",
# "data_source_type": "upload_file",
# "segment_id": "7b391707-93bc-4654-80ae-7989f393b045",
# "retriever_from": "workflow",
# "score": score,
# "segment_hit_count": 7,
# "segment_word_count": 275,
# "segment_position": 5,
# "segment_index_node_hash": "1cd60b478221c9d4831a0b2af3e8b8581d94ecb53e8ffd46af687e8fc3077b73",
# "doc_metadata": None,
# "position":1
# },
# "title": title,
# "content": content
# })
# return {"result": dify_result}
except Exception as e:
error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}")
return {"results": [], "timing": timing_stats}

View File

@ -1,4 +1,5 @@
from ahserver.serverenv import get_serverenv
from sqlor.dbpools import DBPools
async def sor_get_service_params(sor, orgid):
""" 根据 orgid 从数据库获取服务参数 (仅 upappid),假设 service_opts 表返回单条记录。 """
@ -16,8 +17,8 @@ async def sor_get_service_params(sor, orgid):
# 收集服务 ID
service_ids = set()
for key in ['embedding_id', 'vdb_id', 'reranker_id', 'triples_id', 'gdb_id', 'entities_id']:
if opts[key]:
service_ids.add(opts[key])
if opts[key]:
service_ids.add(opts[key])
# 检查 service_ids 是否为空
if not service_ids:
@ -25,7 +26,7 @@ async def sor_get_service_params(sor, orgid):
return None
# 手动构造 IN 子句的 ID 列表
id_list = ','.join([f"'{id}'" for id in service_ids]) # 确保每个 ID 被单引号包裹
id_list = [id for id in service_ids] # 确保每个 ID 被单引号包裹
sql_services = """
SELECT id, name, upappid
FROM ragservices
@ -46,19 +47,19 @@ async def sor_get_service_params(sor, orgid):
'entities': None
}
for service in services_result:
name = service['name']
if name == 'bgem3嵌入':
service_params['embedding'] = service['upappid']
elif name == 'milvus向量检索':
service_params['vdb'] = service['upappid']
elif name == 'bgem2v3重排':
service_params['reranker'] = service['upappid']
elif name == 'mrebel三元组抽取':
service_params['triples'] = service['upappid']
elif name == 'neo4j删除知识库':
service_params['gdb'] = service['upappid']
elif name == 'small实体抽取':
service_params['entities'] = service['upappid']
name = service['name']
if name == 'bgem3嵌入':
service_params['embedding'] = service['upappid']
elif name == 'milvus向量检索':
service_params['vdb'] = service['upappid']
elif name == 'bgem2v3重排':
service_params['reranker'] = service['upappid']
elif name == 'mrebel三元组抽取':
service_params['triples'] = service['upappid']
elif name == 'neo4j删除知识库':
service_params['gdb'] = service['upappid']
elif name == 'small实体抽取':
service_params['entities'] = service['upappid']
# 检查是否所有服务参数都已填充
missing_services = [k for k, v in service_params.items() if v is None]
@ -71,5 +72,5 @@ async def get_service_params(orgid):
db = DBPools()
dbname = get_serverenv('get_module_dbname')('rag')
async with db.sqlorContext(dbname) as sor:
return await sor_get_server_params(sor, orgid)
return await sor_get_service_params(sor, orgid)
return None