This commit is contained in:
wangmeihua 2025-11-28 16:20:20 +08:00
parent 985c5a998a
commit b2088aec49
6 changed files with 488 additions and 88 deletions

Binary file not shown.

View File

@ -2,6 +2,7 @@ import os
import re
import time
import math
import numpy as np
from datetime import datetime
from typing import List, Dict, Any, Optional
from langchain_core.documents import Document
@ -12,7 +13,10 @@ from filetxt.loader import fileloader, File2Text
from rag.uapi_service import APIService
from rag.service_opts import get_service_params
from rag.transaction_manager import TransactionManager, OperationType
from pdf2image import convert_from_path
import pytesseract
import base64
from pathlib import Path
class RagOperations:
"""RAG 操作类,提供所有通用的 RAG 操作"""
@ -33,14 +37,39 @@ class RagOperations:
if ext not in supported_formats:
raise ValueError(f"不支持的文件格式: {ext}, 支持的格式: {', '.join(supported_formats)}")
# 加载文件内容
text = fileloader(realpath)
text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n/]', '', text)
if ext == 'pdf':
debug(f"pdf原生提取结果是{text}")
if not text or len(text.strip()) == 0: # 更严格的空值检查
debug(f"pdf原生提取失败尝试扫描件提取")
ocr_text = self.pdf_to_text(realpath)
debug(f"pdf扫描件抽取的文本内容是{ocr_text}")
text = ocr_text # 只在原生提取失败时使用OCR结果
# 只在有文本内容时进行清洗
if text and len(text.strip()) > 0:
# 或者保留更多有用字符
text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n/]', '', text)
else:
error(f"文件 {realpath} 无法提取任何文本内容")
text = "" # 确保为空字符串
timings["load_file"] = time.time() - start_load
debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}")
if not text or not text.strip():
raise ValueError(f"文件 {realpath} 加载为空")
# # 加载文件内容
# text = fileloader(realpath)
# debug(f"pdf原生提取结果是{text}")
# if len(text) == 0:
# debug(f"pdf原生提取失败尝试扫描件提取")
# text = self.pdf_to_text(realpath)
# debug(f"pdf扫描件抽取的文本内容是{text}")
# text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n/]', '', text)
# timings["load_file"] = time.time() - start_load
# debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}")
#
# if not text or not text.strip():
# raise ValueError(f"文件 {realpath} 加载为空")
# 分片处理
document = Document(page_content=text)
@ -67,6 +96,40 @@ class RagOperations:
return chunks
def pdf_to_text(
self,
pdf_path: str,
output_txt: Optional[str] = None,
dpi: int = 300,
lang: str = 'chi_sim+chi_tra+eng'
) -> str:
"""
将扫描版 PDF 转为文字你原来的代码一行调用版
参数:
pdf_path: PDF 文件路径字符串
output_txt: 如果提供会自动保存到这个 txt 文件可选
dpi: 图片分辨率默认 300越高越清晰
lang: 语言包默认中文简体+繁体+英文
返回:
提取出的完整文字字符串
"""
# PDF 转图片
images = convert_from_path(pdf_path, dpi=dpi)
# OCR 识别
text = ''
for img in images:
text += pytesseract.image_to_string(img, lang=lang) + '\n'
# 可选:自动保存到文件
if output_txt:
with open(output_txt, 'w', encoding='utf-8') as f:
f.write(text)
return text
async def generate_embeddings(self, request, chunks: List[Document], service_params: Dict,
userid: str, timings: Dict,
transaction_mgr: TransactionManager = None) -> List[List[float]]:
@ -149,6 +212,14 @@ class RagOperations:
return result
# async def force_l2_normalize(self, vector: List[float]) -> List[float]:
# """万无一失的 L2 归一化"""
# arr = np.array(vector, dtype=np.float32)
# norm = np.linalg.norm(arr)
# if norm == 0:
# return vector # 全零向量无法归一化
# return (arr / norm).tolist()
# 统一插入向量库
async def insert_all_vectors(
self,
@ -200,7 +271,10 @@ class RagOperations:
# 遍历 multi_results
for raw_key, info in multi_results.items():
typ = info["type"]
# vector = info["vector"]
# debug(f"从后端传回来的向量数据是:{vector}")
# emb = await self.force_l2_normalize(info["vector"])
# debug(f"归一化后的向量数据是:{emb}")
# --- 文本 ---
if typ == "text":
# raw_key 就是原文
@ -253,7 +327,7 @@ class RagOperations:
# "upload_time": upload_time,
# "file_type": "face",
# })
# continue
continue
# --- 视频 ---
if typ == "video":
@ -289,7 +363,7 @@ class RagOperations:
# "upload_time": upload_time,
# "file_type": "face",
# })
# continue
continue
# --- 音频 ---
if typ == "audio":
@ -776,25 +850,150 @@ class RagOperations:
debug(f"三元组匹配总耗时: {timings['triplet_matching']:.3f}")
return all_triplets
async def generate_query_vector(self, request, text: str, service_params: Dict,
userid: str, timings: Dict) -> List[float]:
"""生成查询向量"""
debug(f"生成查询向量: {text[:200]}...")
async def generate_query_vector(
self,
request,
text: str,
service_params: Dict,
userid: str,
timings: Dict,
embedding_mode: int = 0
) -> List[float]:
"""生成查询向量(支持文本/多模态)"""
debug(f"生成查询向量: mode={embedding_mode}, text='{text[:100]}...'")
start_vector = time.time()
query_vector = await self.api_service.get_embeddings(
request=request,
texts=[text],
upappid=service_params['embedding'],
apiname="BAAI/bge-m3",
user=userid
)
if not query_vector or not all(len(vec) == 1024 for vec in query_vector):
raise ValueError("查询向量必须是长度为 1024 的浮点数列表")
query_vector = query_vector[0]
if embedding_mode == 0:
# === 模式 0纯文本嵌入BAAI/bge-m3===
debug("使用 BAAI/bge-m3 文本嵌入")
vectors = await self.api_service.get_embeddings(
request=request,
texts=[text],
upappid=service_params['embedding'],
apiname="BAAI/bge-m3",
user=userid
)
if not vectors or not isinstance(vectors, list) or len(vectors) == 0:
raise ValueError("bge-m3 返回空结果")
query_vector = vectors[0]
if len(query_vector) != 1024:
raise ValueError(f"bge-m3 返回向量维度错误: {len(query_vector)}")
elif embedding_mode == 1:
# === 模式 1多模态嵌入black/clip===
debug("使用 black/clip 多模态嵌入")
inputs = [{"type": "text", "content": text}]
result = await self.api_service.get_multi_embeddings(
request=request,
inputs=inputs,
upappid=service_params['embedding'],
apiname="black/clip",
user=userid
)
query_vector = None
for key, info in result.items():
if info.get("type") == "error":
debug(f"CLIP 返回错误跳过: {info['error']}")
continue
if "vector" in info and isinstance(info["vector"], list) and len(info["vector"]) == 1024:
query_vector = info["vector"]
debug(f"成功获取 CLIP 向量(来自 {info['type']}")
break
if query_vector is None:
raise ValueError("black/clip 未返回任何有效 1024 维向量")
else:
raise ValueError(f"不支持的 embedding_mode: {embedding_mode}")
# 最终统一校验
if not isinstance(query_vector, list) or len(query_vector) != 1024:
raise ValueError(f"查询向量必须是长度为 1024 的浮点数列表,实际: {len(query_vector)}")
timings["vector_generation"] = time.time() - start_vector
debug(f"生成查询向量耗时: {timings['vector_generation']:.3f}")
debug(f"生成查询向量成功,耗时: {timings['vector_generation']:.3f},模式: {embedding_mode}")
return query_vector
async def generate_image_vector(
self,
request,
img_path: str,
service_params: Dict,
userid: str,
timings: Dict,
embedding_mode: int = 0
) -> List[float]:
"""生成查询向量(支持文本/多模态)"""
debug(f"生成查询向量: mode={embedding_mode}, image={img_path}")
start_vector = time.time()
if embedding_mode == 0:
raise ValueError(f"纯文本没有这个功能,请重新选择服务")
elif embedding_mode == 1:
# === 模式 1多模态嵌入black/clip===
debug("使用 black/clip 多模态嵌入")
inputs = []
try:
ext = Path(img_path).suffix.lower()
if ext not in {".png", ".jpg", ".jpeg", ".webp", ".bmp"}:
ext = ".jpg"
mime_map = {
".png": "image/png",
".jpg": "image/jpeg",
".jpeg": "image/jpeg",
".webp": "image/webp",
".bmp": "image/bmp"
}
mime_type = mime_map.get(ext, "image/jpeg")
with open(img_path, "rb") as f:
b64 = base64.b64encode(f.read()).decode("utf-8")
data_uri = f"data:{mime_type};base64,{b64}"
inputs.append({
"type": "image",
"data": data_uri
})
debug(f"已添加图像({mime_type}, {len(b64) / 1024:.1f}KB: {Path(img_path).name}")
except Exception as e:
debug(f"图像处理失败,跳过: {img_path}{e}")
result = await self.api_service.get_multi_embeddings(
request=request,
inputs=inputs,
upappid=service_params['embedding'],
apiname="black/clip",
user=userid
)
image_vector = None
for key, info in result.items():
if info.get("type") == "error":
debug(f"CLIP 返回错误跳过: {info['error']}")
continue
if "vector" in info and isinstance(info["vector"], list) and len(info["vector"]) == 1024:
image_vector = info["vector"]
debug(f"成功获取 CLIP 向量(来自 {info['type']}")
break
if image_vector is None:
raise ValueError("black/clip 未返回任何有效 1024 维向量")
else:
raise ValueError(f"不支持的 embedding_mode: {embedding_mode}")
# 最终统一校验
if not isinstance(image_vector, list) or len(image_vector) != 1024:
raise ValueError(f"查询向量必须是长度为 1024 的浮点数列表,实际: {len(image_vector)}")
timings["vector_generation"] = time.time() - start_vector
debug(f"生成查询向量成功,耗时: {timings['vector_generation']:.3f} 秒,模式: {embedding_mode}")
return image_vector
async def vector_search(self, request, query_vector: List[float], orgid: str,
fiids: List[str], limit: int, service_params: Dict, userid: str,
timings: Dict) -> List[Dict]:
@ -866,34 +1065,49 @@ class RagOperations:
return unique_triples
def format_search_results(self, results: List[Dict], limit: int) -> List[Dict]:
"""格式化搜索结果为统一格式"""
formatted_results = []
# for res in results[:limit]:
# score = res.get('rerank_score', res.get('distance', 0))
#
# content = res.get('text', '')
# title = res.get('metadata', {}).get('filename', 'Untitled')
# document_id = res.get('metadata', {}).get('document_id', '')
#
# formatted_results.append({
# "content": content,
# "title": title,
# "metadata": {"document_id": document_id, "score": score},
# })
#得分归一化
formatted = []
for res in results[:limit]:
rerank_score = res.get('rerank_score', 0)
score = 1 / (1 + math.exp(-rerank_score)) if rerank_score is not None else 1 - res.get('distance', 0)
score = max(0.0, min(1.0, score))
content = res.get('text', '')
title = res.get('metadata', {}).get('filename', 'Untitled')
document_id = res.get('metadata', {}).get('document_id', '')
formatted_results.append({
"content": content,
"title": title,
"metadata": {"document_id": document_id, "score": score},
# # 优先 rerank其次用向量相似度直接用不要反
# if res.get('rerank_score') is not None:
# score = res.get('rerank_score')
# else:
# score = res.get('distance', 0.0)
distance = res.get('distance', 0.0)
rerank_score = res.get('rerank_score', 0.0)
formatted.append({
"content": res.get('text', ''),
"title": res.get('metadata', {}).get('filename', 'Untitled'),
"metadata": {
"document_id": res.get('metadata', {}).get('document_id', ''),
"distance": distance,
"rerank_score": rerank_score,
}
})
return formatted
return formatted_results
# async def save_uploaded_photo(self, image_file: FileStorage, orgid: str) -> str:
# """
# 把前端上传的图片保存到 /home/wangmeihua/kyrag/data/photo 目录下
# 返回保存后的绝对路径(字符串),供 generate_img_vector 使用
# """
# if not image_file or not hasattr(image_file, "filename"):
# raise ValueError("无效的图片上传对象")
#
# # 为了安全,按 orgid 分目录存放(避免不同公司文件混在一起)
# org_dir = UPLOAD_PHOTO_DIR / orgid
# org_dir.mkdir(parents=True, exist_ok=True)
#
# # 生成唯一文件名,保留原始后缀
# suffix = Path(image_file.filename).suffix.lower()
# if not suffix or suffix not in {".jpg", ".jpeg", ".png", ".webp", ".bmp", ".gif"}:
# suffix = ".jpg"
#
# unique_name = f"{uuid.uuid4().hex}{suffix}"
# save_path = org_dir / unique_name
#
# # 真正落盘
# image_file.save(str(save_path))
# debug(f"图片已保存: {save_path} (原始名: {image_file.filename})")
#
# # 返回字符串路径generate_img_vector 直接收 str 就行
# return str(save_path)

View File

@ -6,10 +6,13 @@ import traceback
import json
import math
import uuid
from rag.service_opts import get_service_params, sor_get_service_params
import os
from rag.service_opts import get_service_params, sor_get_service_params, sor_get_embedding_mode, get_embedding_mode
from rag.rag_operations import RagOperations
from langchain_core.documents import Document
REAL_PHOTO_ROOT = "/home/wangmeihua/kyrag/files"
helptext = """kyrag API:
1. 得到kdb表:
@ -134,7 +137,16 @@ async def fusedsearch(request, params_kw, *params):
debug(f"params_kw: {params_kw}")
# orgid = "04J6VbxLqB_9RPMcgOv_8"
# userid = "04J6VbxLqB_9RPMcgOv_8"
query = params_kw.get('query', '')
query = params_kw.get('query', '').strip()
img_path = params_kw.get('image')
if isinstance(img_path, str):
img_path = img_path.strip()
relative_part = img_path.lstrip("/")
real_img_path = os.path.join(REAL_PHOTO_ROOT, relative_part)
if not os.path.exists(real_img_path):
raise FileNotFoundError(f"图片不存在: {real_img_path}")
img_path = real_img_path
debug(f"自动修复图片路径成功: {img_path}")
# 统一模式处理 limit 参数,为了对接dify和coze
raw_limit = params_kw.get('limit') or (
params_kw.get('retrieval_setting', {}).get('top_k')
@ -189,43 +201,211 @@ async def fusedsearch(request, params_kw, *params):
service_params = await get_service_params(orgid)
if not service_params:
raise ValueError("无法获取服务参数")
# 获取嵌入模式
embedding_mode = await get_embedding_mode(orgid)
debug(f"检测到 embedding_mode = {embedding_mode}0=文本, 1=多模态)")
try:
timings = {}
start_time = time.time()
rag_ops = RagOperations()
# 情况1query 和 image 都为空 → 报错
if not query and not img_path:
raise ValueError("查询文本和图片不能同时为空")
query_entities = await rag_ops.extract_entities(request, query, service_params, userid, timings)
all_triplets = await rag_ops.match_triplets(request, query, query_entities, orgid, fiids, service_params,
userid, timings)
combined_text = _combine_query_with_triplets(query, all_triplets)
query_vector = await rag_ops.generate_query_vector(request, combined_text, service_params, userid, timings)
search_results = await rag_ops.vector_search(request, query_vector, orgid, fiids, limit + 5, service_params,
userid, timings)
# 情况2query 和 image 都存在 → 报错(你当前业务不允许同时传)
if query and img_path:
raise ValueError("查询文本和图片只能二选一,不能同时提交")
use_rerank = True
if use_rerank and search_results:
final_results = await rag_ops.rerank_results(request, combined_text, search_results, limit, service_params,
# 3. 只有图片 → 以图搜图 走纯多模态分支
if img_path and not query:
try:
debug("检测到纯图片查询,执行以图搜图")
rag_ops = RagOperations()
timings = {}
start_time = time.time()
# 直接生成图片向量
img_vector = await rag_ops.generate_image_vector(
request, img_path, service_params, userid, timings, embedding_mode
)
# 向量搜索(多取 50 条再截断,和文本分支保持一致)
search_results = await rag_ops.vector_search(
request, img_vector, orgid, fiids, limit + 50, service_params, userid, timings
)
timings["total_time"] = time.time() - start_time
# 可选:搜索完后删除图片,省磁盘(看你需求)
# try:
# os.remove(img_path)
# except:
# pass
final_results = []
for item in search_results[:limit]:
final_results.append({
"text": item["text"],
"distance": item["distance"]
})
return {
"results": final_results,
"timings": timings
}
except Exception as e:
error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}")
return {
"records": [],
"timings": {"total_time": time.time() - start_time if 'start_time' in locals() else 0},
"error": str(e)
}
if not img_path and query:
try:
timings = {}
start_time = time.time()
rag_ops = RagOperations()
query_entities = await rag_ops.extract_entities(request, query, service_params, userid, timings)
all_triplets = await rag_ops.match_triplets(request, query, query_entities, orgid, fiids, service_params,
userid, timings)
combined_text = _combine_query_with_triplets(query, all_triplets)
query_vector = await rag_ops.generate_query_vector(request, combined_text, service_params, userid, timings, embedding_mode)
search_results = await rag_ops.vector_search(request, query_vector, orgid, fiids, limit + 50, service_params,
userid, timings)
debug(f"final_results: {final_results}")
else:
final_results = [{k: v for k, v in r.items() if k != 'rerank_score'} for r in search_results]
formatted_results = rag_ops.format_search_results(final_results, limit)
timings["total_time"] = time.time() - start_time
info(f"融合搜索完成,返回 {len(formatted_results)} 条结果,总耗时: {timings['total_time']:.3f}")
use_rerank = True
if use_rerank and search_results:
final_results = await rag_ops.rerank_results(request, combined_text, search_results, limit, service_params,
userid, timings)
debug(f"final_results: {final_results}")
else:
final_results = [{k: v for k, v in r.items() if k != 'rerank_score'} for r in search_results]
return {
"records": formatted_results,
"timings": timings
}
except Exception as e:
error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}")
return {
"records": [],
"timings": {"total_time": time.time() - start_time if 'start_time' in locals() else 0},
"error": str(e)
}
formatted_results = rag_ops.format_search_results(final_results, limit)
timings["total_time"] = time.time() - start_time
debug(f"融合搜索完成,返回 {len(formatted_results)} 条结果,总耗时: {timings['total_time']:.3f}")
return {
"records": formatted_results,
"timings": timings
}
except Exception as e:
error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}")
return {
"records": [],
"timings": {"total_time": time.time() - start_time if 'start_time' in locals() else 0},
"error": str(e)
}
# async def fusedsearch(request, params_kw, *params):
# """
# 融合搜索,调用服务化端点
#
# """
# kw = request._run_ns
# f = kw.get('get_userorgid')
# orgid = await f()
# debug(f"orgid: {orgid}{f=}")
# f = kw.get('get_user')
# userid = await f()
# debug(f"params_kw: {params_kw}")
# # orgid = "04J6VbxLqB_9RPMcgOv_8"
# # userid = "04J6VbxLqB_9RPMcgOv_8"
# query = params_kw.get('query', '')
# # 统一模式处理 limit 参数,为了对接dify和coze
# raw_limit = params_kw.get('limit') or (
# params_kw.get('retrieval_setting', {}).get('top_k')
# if isinstance(params_kw.get('retrieval_setting'), dict)
# else None
# )
#
# # 标准化为整数值
# if raw_limit is None:
# limit = 5 # 两个来源都不存在时使用默认值
# elif isinstance(raw_limit, (int, float)):
# limit = int(raw_limit) # 数值类型直接转换
# elif isinstance(raw_limit, str):
# try:
# # 字符串转换为整数
# limit = int(raw_limit)
# except (TypeError, ValueError):
# limit = 5 # 转换失败使用默认值
# else:
# limit = 5 # 其他意外类型使用默认值
# debug(f"limit: {limit}")
# raw_fiids = params_kw.get('fiids') or params_kw.get('knowledge_id') #
#
# # 标准化为列表格式
# if raw_fiids is None:
# fiids = [] # 两个参数都不存在
# elif isinstance(raw_fiids, list):
# fiids = [str(item).strip() for item in raw_fiids] # 已经是列表
# elif isinstance(raw_fiids, str):
# # fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()]
# try:
# # 尝试解析 JSON 字符串
# parsed = json.loads(raw_fiids)
# if isinstance(parsed, list):
# fiids = [str(item).strip() for item in parsed] # JSON 数组转为字符串列表
# else:
# # 处理逗号分隔的字符串或单个 ID 字符串
# fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()]
# except json.JSONDecodeError:
# # 如果不是合法 JSON按逗号分隔
# fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()]
# elif isinstance(raw_fiids, (int, float)):
# fiids = [str(int(raw_fiids))] # 数值类型转为字符串列表
# else:
# fiids = [] # 其他意外类型
#
# debug(f"fiids: {fiids}")
#
# # 验证 fiids的orgid与orgid = await f()是否一致
# await _validate_fiids_orgid(fiids, orgid, kw)
#
# service_params = await get_service_params(orgid)
# if not service_params:
# raise ValueError("无法获取服务参数")
# # 获取嵌入模式
# embedding_mode = await get_embedding_mode(orgid)
# debug(f"检测到 embedding_mode = {embedding_mode}0=文本, 1=多模态)")
#
# try:
# timings = {}
# start_time = time.time()
# rag_ops = RagOperations()
#
# query_entities = await rag_ops.extract_entities(request, query, service_params, userid, timings)
# all_triplets = await rag_ops.match_triplets(request, query, query_entities, orgid, fiids, service_params,
# userid, timings)
# combined_text = _combine_query_with_triplets(query, all_triplets)
# query_vector = await rag_ops.generate_query_vector(request, combined_text, service_params, userid, timings, embedding_mode)
# search_results = await rag_ops.vector_search(request, query_vector, orgid, fiids, limit + 50, service_params,
# userid, timings)
#
# use_rerank = False
# if use_rerank and search_results:
# final_results = await rag_ops.rerank_results(request, combined_text, search_results, limit, service_params,
# userid, timings)
# debug(f"final_results: {final_results}")
# else:
# final_results = [{k: v for k, v in r.items() if k != 'rerank_score'} for r in search_results]
#
# formatted_results = rag_ops.format_search_results(final_results, limit)
# timings["total_time"] = time.time() - start_time
# debug(f"融合搜索完成,返回 {len(formatted_results)} 条结果,总耗时: {timings['total_time']:.3f} 秒")
#
# return {
# "records": formatted_results,
# "timings": timings
# }
# except Exception as e:
# error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}")
# return {
# "records": [],
# "timings": {"total_time": time.time() - start_time if 'start_time' in locals() else 0},
# "error": str(e)
# }
# async def text_insert(text: str, fiid: str, orgid: str, db_type: str):
async def textinsert(request, params_kw, *params):

View File

@ -94,7 +94,7 @@ async def sor_get_embedding_mode(sor, orgid) -> int:
async def get_embedding_mode(orgid):
db = DBPools()
debug(f"传入的orgid是{orgid}")
# debug(f"传入的orgid是{orgid}")
dbname = get_serverenv('get_module_dbname')('rag')
async with db.sqlorContext(dbname) as sor:
return await sor_get_embedding_mode(sor, orgid)

View File

@ -18,6 +18,11 @@
"editable": true,
"rows": 5
},
{
"uitype": "image",
"name": "image",
"label": "上传查询图片(可选)"
},
{
"name": "fiids",
"uitype": "checkbox",

View File

@ -7,14 +7,15 @@ if not orgid:
message='请先登录'
)
fiids = params_kw.fiids
query = params_kw.query
image = params_kw.image
fiids = params_kw.fiids
limit = params_kw.limit
if not query or not fiids or not limit:
if (not query and not image) or not fiids or not limit:
return UiError(
title='无效输入',
message='请输入查询文本并选择至少一个知识库'
message='请输入查询文本或上传image并选择至少一个知识库和填写返回条数'
)
try: