diff --git a/json/embeddingmode.json b/json/embeddingmode.json new file mode 100644 index 0000000..bd20da7 --- /dev/null +++ b/json/embeddingmode.json @@ -0,0 +1,16 @@ +{ + "tblname": "embedding_mode", + "title":"嵌入模式", + "params":{ + "browserfields":{ + "exclouded":["id"], + "alters":{} + }, + "editexclouded":["id"], + "toolbar":{ + }, + "binds":[ + ] + } +} + diff --git a/models/embeddingmode.xlsx b/models/embeddingmode.xlsx new file mode 100644 index 0000000..af4ba5d Binary files /dev/null and b/models/embeddingmode.xlsx differ diff --git a/rag/fileprocess.py b/rag/fileprocess.py new file mode 100644 index 0000000..87e4863 --- /dev/null +++ b/rag/fileprocess.py @@ -0,0 +1,341 @@ +import numpy as np +import os +import re +from pdf2image import convert_from_path +from appPublic.log import debug, error, info +from pathlib import Path +import zipfile +import xml.etree.ElementTree as ET +from PIL import Image +from typing import List + +# ==================== 新增:路径安全化函数 ==================== +def safe_filename(name: str) -> str: + """ + 安全化文件名/目录名 + - 去除首尾空格 + - 多个空格 → 单空格 + - 非法字符 → 下划线 + - 空格 → 下划线(推荐!永不炸) + """ + name = name.strip() + name = re.sub(r'\s+', ' ', name) # 多个空格合并 + name = re.sub(r'[<>:"/\\|?*]', '_', name) # 非法字符 + name = name.replace(' ', '_') # 空格 → 下划线(关键!) + return name + +def render_pdf_to_images(pdf_path, base_output_dir, dpi=200, image_format="PNG")-> List[str]: + """ + 将PDF文件的每一页渲染为图片 + + 参数: + pdf_path (str): PDF文件路径 + page_output_dir (str): 输出图片的目录 + dpi (int): 图片分辨率,默认200 + image_format (str): 图片格式,默认PNG + + 返回: + int: 成功渲染的页面数量 + """ + pdf_filename = safe_filename(Path(pdf_path).stem) + page_output_dir = os.path.join(base_output_dir, pdf_filename) + + # 创建输出目录(如果不存在) + if not os.path.exists(page_output_dir): + os.makedirs(page_output_dir, exist_ok=True) + debug(f"创建输出目录: {page_output_dir}") + + try: + # 检查PDF文件是否存在 + if not os.path.exists(pdf_path): + error(f"PDF文件不存在: {pdf_path}") + return [] + + debug(f"开始渲染PDF: {pdf_path}") + debug(f"输出目录: {page_output_dir}") + debug(f"分辨率: {dpi} DPI, 格式: {image_format}") + + # 渲染PDF页面为图片 + pages = convert_from_path(pdf_path, dpi=dpi) + + debug(f"PDF总页数: {len(pages)}") + debug("📄 正在渲染 PDF 页面...") + + img_paths = [] + for i, page in enumerate(pages, start=1): + try: + # 生成图片文件路径 + img_path = os.path.join(page_output_dir, f"page_{i:03d}.{image_format.lower()}") + img_paths.append(img_path) + # 保存图片 + page.save(img_path, image_format) + debug(f"✅ 已保存 {img_path}") + + except Exception as e: + error(f"保存第 {i} 页失败: {e}") + continue + + debug(f"渲染完成: 成功保存{len(pages)} 页") + return img_paths + + except Exception as e: + error(f"渲染PDF失败: {e}") + return [] + + +def extract_images_from_word(doc_path, base_output_dir) -> List[str]: + """ + 从Word文档中提取所有图像 + + 参数: + doc_path (str): Word文档路径(.docx格式) + base_output_dir (str): 基础输出目录,会在此目录下创建以文档名命名的子文件夹 + + 返回: + int: 成功提取的图像数量 + """ + # 检查文件是否为.docx格式 + if not doc_path.lower().endswith('.docx'): + error(f"仅支持.docx格式的Word文档: {doc_path}") + return [] + + # 从文档路径提取文件名(不含扩展名) + doc_filename = safe_filename(Path(doc_path).stem) + + # 创建以文档名命名的子文件夹 + image_output_dir = os.path.join(base_output_dir, doc_filename) + + # 创建输出目录(如果不存在) + if not os.path.exists(image_output_dir): + os.makedirs(image_output_dir, exist_ok=True) + debug(f"创建输出目录: {image_output_dir}") + + try: + # 检查文档是否存在 + if not os.path.exists(doc_path): + error(f"Word文档不存在: {doc_path}") + return [] + + debug(f"开始从Word文档提取图像: {doc_path}") + debug(f"输出目录: {image_output_dir}") + + # 将.docx文件视为zip文件处理 + with zipfile.ZipFile(doc_path, 'r') as docx: + # 获取所有文件列表 + file_list = docx.namelist() + + # 筛选出图像文件(通常位于word/media/目录下) + image_files = [f for f in file_list if f.startswith('word/media/') and not f.endswith('/') and os.path.basename(f)] + + debug(f"找到 {len(image_files)} 个图像文件") + + img_paths = [] + for i, image_path in enumerate(image_files): + try: + # 提取图像文件名 + image_name = os.path.basename(image_path) + + # 确保文件名有效 + if not image_name or image_name == "media": + # 从路径中提取有意义的文件名 + parts = image_path.split('/') + for part in reversed(parts): + if part and part != "media": + image_name = part + break + else: + image_name = f"image_{i + 1}.png" + + # 添加文件扩展名如果缺失 + if not Path(image_name).suffix: + # 尝试从文件内容检测格式,否则使用默认png + image_name += ".png" + + # 生成输出文件路径 + output_path = os.path.join(image_output_dir, f"image_{i + 1:03d}_{image_name}") + img_paths.append(output_path) + # 提取并保存图像 + with docx.open(image_path) as image_file: + image_data = image_file.read() + + # 保存图像数据 + with open(output_path, 'wb') as f: + f.write(image_data) + + debug(f"✅ 已提取图像: {output_path}") + + except Exception as e: + error(f"提取图像 {image_path} 失败: {e}") + continue + + debug(f"Word文档图像提取完成: 成功提取 {len(image_files)} 个图像") + return img_paths + + except Exception as e: + error(f"提取Word文档图像失败: {e}") + return [] + + +def extract_images_from_ppt(ppt_path, base_output_dir) -> List[str]: + """ + 从PowerPoint演示文稿中提取所有图像 + + 参数: + ppt_path (str): PowerPoint文件路径(.pptx格式) + base_output_dir (str): 基础输出目录,会在此目录下创建以PPT名命名的子文件夹 + + 返回: + int: 成功提取的图像数量 + """ + # 检查文件是否为.pptx格式 + if not ppt_path.lower().endswith('.pptx'): + error(f"仅支持.pptx格式的PowerPoint文档: {ppt_path}") + return [] + + # 从PPT路径提取文件名(不含扩展名) + ppt_filename = safe_filename(Path(ppt_path).stem) + + # 创建以PPT名命名的子文件夹 + image_output_dir = os.path.join(base_output_dir, ppt_filename) + + # 创建输出目录(如果不存在) + if not os.path.exists(image_output_dir): + os.makedirs(image_output_dir, exist_ok=True) + debug(f"创建输出目录: {image_output_dir}") + + try: + # 检查PPT文件是否存在 + if not os.path.exists(ppt_path): + error(f"PowerPoint文档不存在: {ppt_path}") + return [] + + debug(f"开始从PowerPoint文档提取图像: {ppt_path}") + debug(f"输出目录: {image_output_dir}") + + # 将.pptx文件视为zip文件处理 + with zipfile.ZipFile(ppt_path, 'r') as pptx: + # 获取所有文件列表 + file_list = pptx.namelist() + + # 筛选出图像文件(通常位于ppt/media/目录下) + image_files = [f for f in file_list if f.startswith('ppt/media/') and not f.endswith('/') and os.path.basename(f)] + + debug(f"找到 {len(image_files)} 个图像文件") + + img_paths = [] + for i, image_path in enumerate(image_files): + try: + # 提取图像文件名 + image_name = Path(image_path).name + + # 验证文件名有效性 + if not image_name or image_name == "media": + parts = image_path.split('/') + for part in reversed(parts): + if part and part != "media": + image_name = part + break + else: + image_name = f"image_{i + 1}.png" + + # 确保有文件扩展名 + if not Path(image_name).suffix: + image_name += ".png" + + # 生成输出文件路径 + output_path = os.path.join(image_output_dir, f"image_{i + 1:03d}_{image_name}") + img_paths.append(output_path) + # 提取并保存图像 + with pptx.open(image_path) as image_file: + image_data = image_file.read() + + # 保存图像数据 + with open(output_path, 'wb') as f: + f.write(image_data) + + debug(f"✅ 已提取图像: {output_path}") + + except Exception as e: + error(f"提取图像 {image_path} 失败: {e}") + continue + + debug(f"PowerPoint文档图像提取完成: 成功提取{len(image_files)} 个图像") + return img_paths + + except Exception as e: + error(f"提取PowerPoint文档图像失败: {e}") + return [] + + +def extract_images_from_file(file_path, base_output_dir="/home/wangmeihua/kyrag/data/extracted_images", file_type=None): + """ + 通用函数:根据文件类型自动选择提取方法 + + 参数: + file_path (str): 文件路径 + base_output_dir (str): 基础输出目录 + file_type (str): 文件类型(可选,自动检测) + + 返回: + int: 成功提取的图像/页面数量 + """ + # 如果没有指定文件类型,根据扩展名自动检测 + if file_type is None: + ext = Path(file_path).suffix.lower() + if ext == '.pdf': + file_type = 'pdf' + elif ext == '.docx': + file_type = 'word' + elif ext == '.pptx': + file_type = 'ppt' + else: + error(f"不支持的文件类型: {ext}") + return [] + + # 根据文件类型调用相应的函数 + if file_type == 'pdf': + return render_pdf_to_images(file_path, base_output_dir) + elif file_type == 'word': + return extract_images_from_word(file_path, base_output_dir) + elif file_type == 'ppt': + return extract_images_from_ppt(file_path, base_output_dir) + else: + error(f"不支持的文件类型: {file_type}") + return [] + + +# 使用示例 +if __name__ == "__main__": + base_output_dir = "/home/wangmeihua/kyrag/data/extracted_images" + + # PDF文件处理 + pdf_path = "/home/wangmeihua/kyrag/22-zh-review.pdf" + pdf_imgs = extract_images_from_file(pdf_path, base_output_dir, 'pdf') + debug(f"pdf_imgs: {pdf_imgs}") + if len(pdf_imgs) > 0: + debug(f"成功处理PDF: {len(pdf_imgs)} 页") + else: + error("PDF处理失败") + + # Word文档处理 + doc_path = "/home/wangmeihua/kyrag/test.docx" + if os.path.exists(doc_path): + doc_imgs = extract_images_from_file(doc_path, base_output_dir, 'word') + debug(f"doc_imgs: {doc_imgs}") + if len(doc_imgs) > 0: + debug(f"成功处理Word文档: {len(doc_imgs)} 个图像") + else: + error("Word文档处理失败") + else: + debug(f"Word文档不存在: {doc_path}") + + # PowerPoint处理 + ppt_path = "/home/wangmeihua/kyrag/提示学习-王美华.pptx" + if os.path.exists(ppt_path): + ppt_imgs = extract_images_from_file(ppt_path, base_output_dir, 'ppt') + if len(ppt_imgs) > 0: + debug(f"成功处理PowerPoint: {len(ppt_imgs)} 个图像") + else: + error("PowerPoint处理失败") + else: + debug(f"PowerPoint文档不存在: {ppt_path}") \ No newline at end of file diff --git a/rag/folderinfo.py b/rag/folderinfo.py index 89215eb..afd1b9e 100644 --- a/rag/folderinfo.py +++ b/rag/folderinfo.py @@ -17,13 +17,15 @@ import traceback from filetxt.loader import fileloader,File2Text from ahserver.serverenv import get_serverenv from typing import List, Dict, Any -from rag.service_opts import get_service_params, sor_get_service_params +from rag.service_opts import get_service_params, sor_get_service_params, sor_get_embedding_mode, get_embedding_mode +from rag.fileprocess import extract_images_from_file from rag.rag_operations import RagOperations import json from rag.transaction_manager import TransactionContext from dataclasses import dataclass from enum import Enum - +import base64 +from pathlib import Path class RagFileMgr(FileMgr): def __init__(self, fiid): @@ -53,6 +55,10 @@ where a.orgid = b.orgid return r.quota, r.expired_date return None, None + async def file_to_base64(self,path: str) -> str: + with open(path, "rb") as f: + return base64.b64encode(f.read()).decode("utf-8") + async def file_uploaded(self, request, ns, userid): """将文档插入 Milvus 并抽取三元组到 Neo4j""" debug(f'Received ns: {ns=}') @@ -104,21 +110,107 @@ where a.orgid = b.orgid raise ValueError("无法获取服务参数") rollback_context["service_params"] = service_params + #获取嵌入模式 + embedding_mode = await get_embedding_mode(orgid) + debug(f"检测到 embedding_mode = {embedding_mode}(0=文本, 1=多模态)") + # 加载和分片文档 chunks = await self.rag_ops.load_and_chunk_document( realpath, timings, transaction_mgr=transaction_mgr ) - # 生成嵌入向量 - embeddings = await self.rag_ops.generate_embeddings( - request, chunks, service_params, userid, timings, transaction_mgr=transaction_mgr - ) + text_embeddings = None + multi_results = None + image_paths = [] - # 插入 Milvus - chunks_data = await self.rag_ops.insert_to_vector_db( - request, chunks, embeddings, realpath, orgid, fiid, id, - service_params, userid, db_type, timings, transaction_mgr=transaction_mgr + if embedding_mode == 1: + inputs = [] + # 文本 + for chunk in chunks: + inputs.append({"type": "text", "content": chunk.page_content}) + + debug("开始多模态图像抽取与嵌入") + image_paths = extract_images_from_file(realpath) + debug(f"从文档中抽取 {len(image_paths)} 张图像") + + if image_paths: + for img_path in image_paths: + try: + # 1. 自动识别真实格式 + ext = Path(img_path).suffix.lower() + if ext not in {".png", ".jpg", ".jpeg", ".webp", ".bmp"}: + ext = ".jpg" + + mime_map = { + ".png": "image/png", + ".jpg": "image/jpeg", + ".jpeg": "image/jpeg", + ".webp": "image/webp", + ".bmp": "image/bmp" + } + mime_type = mime_map.get(ext, "image/jpeg") + + # # 2. 智能压缩(>1MB 才压缩,节省 70% 流量) + # img = Image.open(img_path).convert("RGB") + # if os.path.getsize(img_path) > 1024 * 1024: # >1MB + # buffer = BytesIO() + # img.save(buffer, format="JPEG", quality=85, optimize=True) + # b64 = base64.b64encode(buffer.getvalue()).decode() + # data_uri = f"data:image/jpeg;base64,{b64}" + # else: + b64 = await self.file_to_base64(img_path) + data_uri = f"data:{mime_type};base64,{b64}" + + inputs.append({ + "type": "image", + "data": data_uri + }) + debug(f"已添加图像({mime_type}, {len(b64) / 1024:.1f}KB): {Path(img_path).name}") + + except Exception as e: + debug(f"图像处理失败,跳过: {img_path} → {e}") + # 即使失败也加个占位,防止顺序错乱 + inputs.append({ + "type": "image", + "data": "" + }) + + debug(f"混排输入总数: {len(inputs)}(文本 {len(chunks)} + 图像 {len(image_paths)})") + + multi_results = await self.rag_ops.generate_multi_embeddings( + request=request, + inputs=inputs, + service_params=service_params, + userid=userid, + timings=timings, + transaction_mgr=transaction_mgr + ) + debug(f"多模态嵌入成功,返回 {len(multi_results)} 条结果") + else: + # 生成嵌入向量 + debug("【纯文本模式】使用 BGE 嵌入") + text_embeddings = await self.rag_ops.generate_embeddings( + request, chunks, service_params, userid, timings, transaction_mgr=transaction_mgr + ) + debug(f"BGE 嵌入完成: {len(text_embeddings)} 条") + + inserted = await self.rag_ops.insert_all_vectors( + request=request, + text_chunks=chunks, + realpath=realpath, + orgid=orgid, + fiid=fiid, + document_id=id, + service_params=service_params, + userid=userid, + db_type=db_type, + timings=timings, + img_paths=image_paths, + text_embeddings=text_embeddings, + multi_results=multi_results, + transaction_mgr=transaction_mgr ) + debug(f"统一插入: 文本 {inserted['text']}, 图像 {inserted['image']}, 人脸 {inserted['face']}") # 抽取三元组 triples = await self.rag_ops.extract_triples( diff --git a/rag/init.py b/rag/init.py index 56bf3eb..3dcfdee 100644 --- a/rag/init.py +++ b/rag/init.py @@ -3,7 +3,6 @@ from ahserver.serverenv import ServerEnv import aiohttp from aiohttp import ClientSession, ClientTimeout import json -from .file import file_uploaded, file_deleted from .folderinfo import RagFileMgr from .ragprogram import set_program, get_rag_programs from .ragllm_utils import get_ragllms_by_catelog diff --git a/rag/rag_operations.py b/rag/rag_operations.py index 0280397..ec04e76 100644 --- a/rag/rag_operations.py +++ b/rag/rag_operations.py @@ -2,6 +2,7 @@ import os import re import time import math +import numpy as np from datetime import datetime from typing import List, Dict, Any, Optional from langchain_core.documents import Document @@ -12,7 +13,10 @@ from filetxt.loader import fileloader, File2Text from rag.uapi_service import APIService from rag.service_opts import get_service_params from rag.transaction_manager import TransactionManager, OperationType - +from pdf2image import convert_from_path +import pytesseract +import base64 +from pathlib import Path class RagOperations: """RAG 操作类,提供所有通用的 RAG 操作""" @@ -33,14 +37,39 @@ class RagOperations: if ext not in supported_formats: raise ValueError(f"不支持的文件格式: {ext}, 支持的格式: {', '.join(supported_formats)}") - # 加载文件内容 text = fileloader(realpath) - text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n/]', '', text) + if ext == 'pdf': + debug(f"pdf原生提取结果是:{text}") + if not text or len(text.strip()) == 0: # 更严格的空值检查 + debug(f"pdf原生提取失败,尝试扫描件提取") + ocr_text = self.pdf_to_text(realpath) + debug(f"pdf扫描件抽取的文本内容是:{ocr_text}") + text = ocr_text # 只在原生提取失败时使用OCR结果 + + # 只在有文本内容时进行清洗 + if text and len(text.strip()) > 0: + # 或者保留更多有用字符 + text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n/]', '', text) + else: + error(f"文件 {realpath} 无法提取任何文本内容") + text = "" # 确保为空字符串 + timings["load_file"] = time.time() - start_load debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}") - if not text or not text.strip(): - raise ValueError(f"文件 {realpath} 加载为空") + # # 加载文件内容 + # text = fileloader(realpath) + # debug(f"pdf原生提取结果是:{text}") + # if len(text) == 0: + # debug(f"pdf原生提取失败,尝试扫描件提取") + # text = self.pdf_to_text(realpath) + # debug(f"pdf扫描件抽取的文本内容是:{text}") + # text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n/]', '', text) + # timings["load_file"] = time.time() - start_load + # debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}") + # + # if not text or not text.strip(): + # raise ValueError(f"文件 {realpath} 加载为空") # 分片处理 document = Document(page_content=text) @@ -67,6 +96,40 @@ class RagOperations: return chunks + def pdf_to_text( + self, + pdf_path: str, + output_txt: Optional[str] = None, + dpi: int = 300, + lang: str = 'chi_sim+chi_tra+eng' + ) -> str: + """ + 将扫描版 PDF 转为文字(你原来的代码,一行调用版) + + 参数: + pdf_path: PDF 文件路径(字符串) + output_txt: 如果提供,会自动保存到这个 txt 文件(可选) + dpi: 图片分辨率,默认 300(越高越清晰) + lang: 语言包,默认中文简体+繁体+英文 + + 返回: + 提取出的完整文字(字符串) + """ + # PDF 转图片 + images = convert_from_path(pdf_path, dpi=dpi) + + # OCR 识别 + text = '' + for img in images: + text += pytesseract.image_to_string(img, lang=lang) + '\n' + + # 可选:自动保存到文件 + if output_txt: + with open(output_txt, 'w', encoding='utf-8') as f: + f.write(text) + + return text + async def generate_embeddings(self, request, chunks: List[Document], service_params: Dict, userid: str, timings: Dict, transaction_mgr: TransactionManager = None) -> List[List[float]]: @@ -103,84 +166,488 @@ class RagOperations: return embeddings - async def insert_to_vector_db(self, request, chunks: List[Document], embeddings: List[List[float]], - realpath: str, orgid: str, fiid: str, id: str, service_params: Dict, - userid: str, db_type: str, timings: Dict, - transaction_mgr: TransactionManager = None): - """插入向量数据库""" - debug(f"准备数据并调用插入文件端点: {realpath}") - filename = os.path.basename(realpath).rsplit('.', 1)[0] - ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else '' + async def generate_multi_embeddings(self, request, inputs: List[Dict], service_params: Dict, + userid: str, timings: Dict, + transaction_mgr: TransactionManager = None) -> Dict[str, Dict]: + """调用多模态嵌入服务(CLIP)""" + debug("调用多模态嵌入服务") + start = time.time() + + result = await self.api_service.get_multi_embeddings( + request=request, + inputs=inputs, + upappid=service_params['embedding'], + apiname="black/clip", + user=userid + ) + debug(f"多模态返回结果是{result}") + timings["multi_embedding"] = time.time() - start + debug(f"多模态嵌入耗时: {timings['multi_embedding']:.2f}秒,处理 {len(result)} 条") + + # ==================== 新增:错误检查 + 过滤 ==================== + valid_results = {} + error_count = 0 + error_examples = [] + + for key, info in result.items(): + if info.get("type") == "error": + error_count += 1 + if len(error_examples) < 3: # 只记录前3个 + error_examples.append(f"{key} → {info['error']}") + # 直接丢弃错误条目 + continue + valid_results[key] = info + + if error_count > 0: + error(f"多模态嵌入失败 {error_count} 条!示例:{'; '.join(error_examples)}") + raise RuntimeError(f"多模态嵌入有{error_count} 条失败") + else: + debug("多模态嵌入全部成功!") + + if transaction_mgr: + transaction_mgr.add_operation( + OperationType.EMBEDDING, + {'count': len(result)} + ) + + return result + + # async def force_l2_normalize(self, vector: List[float]) -> List[float]: + # """万无一失的 L2 归一化""" + # arr = np.array(vector, dtype=np.float32) + # norm = np.linalg.norm(arr) + # if norm == 0: + # return vector # 全零向量无法归一化 + # return (arr / norm).tolist() + + # 统一插入向量库 + async def insert_all_vectors( + self, + request, + text_chunks: List[Document], + realpath: str, + orgid: str, + fiid: str, + document_id: str, + service_params: Dict, + userid: str, + db_type: str, + timings: Dict, + img_paths: List[str] = None, + text_embeddings: List[List[float]] = None, + multi_results: Dict = None, + transaction_mgr: TransactionManager = None + ) -> Dict[str, int]: + """ + 统一插入函数:支持两种模式 + 1. 纯文本模式:text_embeddings 有值 + 2. 多模态模式:multi_results 有值(来自 generate_multi_embeddings) + """ + img_paths = img_paths or [] + all_chunks = [] + start = time.time() + filename = os.path.basename(realpath) upload_time = datetime.now().isoformat() - chunks_data = [ - { - "userid": orgid, - "knowledge_base_id": fiid, - "text": chunk.page_content, - "vector": embeddings[i], - "document_id": id, - "filename": filename + '.' + ext, - "file_path": realpath, - "upload_time": upload_time, - "file_type": ext, - } - for i, chunk in enumerate(chunks) - ] + # ==================== 1. 纯文本模式(BGE) ==================== + if text_embeddings is not None: + debug(f"【纯文本模式】插入 {len(text_embeddings)} 条文本向量") + for i, chunk in enumerate(text_chunks): + all_chunks.append({ + "userid": orgid, + "knowledge_base_id": fiid, + "text": chunk.page_content, + "vector": text_embeddings[i], + "document_id": document_id, + "filename": filename, + "file_path": realpath, + "upload_time": upload_time, + "file_type": "text", + }) - start_milvus = time.time() - for i in range(0, len(chunks_data), 10): - batch_chunks = chunks_data[i:i + 10] - debug(f"传入的数据是:{batch_chunks}") + # ==================== 2. 多模态模式(CLIP 混排) ==================== + if multi_results is not None: + debug(f"【多模态模式】解析 {len(multi_results)} 条 CLIP 结果") + # 遍历 multi_results + for raw_key, info in multi_results.items(): + typ = info["type"] + # vector = info["vector"] + # debug(f"从后端传回来的向量数据是:{vector}") + # emb = await self.force_l2_normalize(info["vector"]) + # debug(f"归一化后的向量数据是:{emb}") + # --- 文本 --- + if typ == "text": + # raw_key 就是原文 + all_chunks.append({ + "userid": orgid, + "knowledge_base_id": fiid, + "text": raw_key, + "vector": info["vector"], + "document_id": document_id, + "filename": filename, + "file_path": realpath, + "upload_time": upload_time, + "file_type": "text", + }) + continue + + # --- 图像 --- + if typ == "image": + img_path = info.get("path") or raw_key + img_name = os.path.basename(img_path) + + # 整图向量 + if "vector" in info: + all_chunks.append({ + "userid": orgid, + "knowledge_base_id": fiid, + "text": f"[Image: {img_path}]图片来源于文件{realpath}", + "vector": info["vector"], + "document_id": document_id, + "filename": img_name, + "file_path": realpath, + "upload_time": upload_time, + "file_type": "image", + }) + + # 人脸向量 + face_vecs = info.get("face_vecs", []) + face_count = len(face_vecs) + # if face_count > 0: + # for f_idx, fvec in enumerate(face_vecs): + # debug(f"人脸向量维度是:{len(fvec)}") + # all_chunks.append({ + # "userid": orgid, + # "knowledge_base_id": fiid, + # "text": f"[Face {f_idx + 1}/{face_count} in {img_name}]人脸来源于{realpath}的{img_path}图片", + # "vector": fvec, + # "document_id": document_id, + # "filename": img_name, + # "file_path": realpath, + # "upload_time": upload_time, + # "file_type": "face", + # }) + continue + + # --- 视频 --- + if typ == "video": + video_path = info.get("path") or raw_key + video_name = os.path.basename(video_path) + + if "vector" in info: + all_chunks.append({ + "userid": orgid, + "knowledge_base_id": fiid, + "text": f"[Video: {video_name}]", + "vector": info["vector"], + "document_id": document_id, + "filename": video_path, + "file_path": realpath, + "upload_time": upload_time, + "file_type": "video", + }) + + # 视频人脸 + face_vecs = info.get("face_vecs", []) + face_count = len(face_vecs) + # if face_count > 0 : + # for f_idx, fvec in enumerate(face_vecs): + # all_chunks.append({ + # "userid": orgid, + # "knowledge_base_id": fiid, + # "text": f"[Face {f_idx + 1}/{face_count} in video {video_name}]来源于{video_path}", + # "vector": fvec, + # "document_id": document_id, + # "filename": video_path, + # "file_path": realpath, + # "upload_time": upload_time, + # "file_type": "face", + # }) + continue + + # --- 音频 --- + if typ == "audio": + audio_path = info.get("path") or raw_key + audio_name = os.path.basename(audio_path) + + if "vector" in info: + all_chunks.append({ + "userid": orgid, + "knowledge_base_id": fiid, + "text": f"[Audio: {audio_name}]", + "vector": info["vector"], + "document_id": document_id, + "filename": audio_path, + "file_path": realpath, + "upload_time": upload_time, + "file_type": "audio", + }) + continue + + # --- 未知类型 --- + debug(f"未知类型跳过: {typ} → {raw_key}") + + # ==================== 3. 批量插入 Milvus ==================== + if not all_chunks: + debug("无向量需要插入") + return {"text": 0, "image": 0, "face": 0} + + for i in range(0, len(all_chunks), 10): + batch = all_chunks[i:i + 10] result = await self.api_service.milvus_insert_document( request=request, - chunks=batch_chunks, - db_type=db_type, + chunks=batch, upappid=service_params['vdb'], apiname="milvus/insertdocument", - user=userid + user=userid, + db_type=db_type ) if result.get("status") != "success": - raise ValueError(result.get("message", "Milvus 插入失败")) + raise ValueError(f"Milvus 插入失败: {result.get('message')}") - timings["insert_milvus"] = time.time() - start_milvus - debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f} 秒") - - # 记录事务操作,包含回滚函数 - if transaction_mgr: - async def rollback_vdb_insert(data, context): + # ==================== 4. 统一回滚(只登记一次) ==================== + if transaction_mgr and all_chunks: + async def rollback_all(data, context): try: - # 防御性检查 - required_context = ['request', 'service_params', 'userid'] - missing_context = [k for k in required_context if k not in context or context[k] is None] - if missing_context: - raise ValueError(f"回滚上下文缺少字段: {', '.join(missing_context)}") - - required_data = ['orgid', 'realpath', 'fiid', 'id', 'db_type'] - missing_data = [k for k in required_data if k not in data or data[k] is None] - if missing_data: - raise ValueError(f"VDB_INSERT 数据缺少字段: {', '.join(missing_data)}") - await self.delete_from_vector_db( - context['request'], data['orgid'], data['realpath'], - data['fiid'], data['id'], context['service_params'], - context['userid'], data['db_type'] + request=context['request'], + orgid=data['orgid'], + realpath=data['realpath'], + fiid=data['fiid'], + id=data['document_id'], + service_params=context['service_params'], + userid=context['userid'], + db_type=data['db_type'] ) - return f"已回滚向量数据库插入: {data['id']}" + return f"已回滚 document_id={data['document_id']} 的所有向量" except Exception as e: - error(f"回滚向量数据库失败: document_id={data.get('id', '未知')}, 错误: {str(e)}") + error(f"统一回滚失败: {e}") raise transaction_mgr.add_operation( OperationType.VDB_INSERT, { - 'orgid': orgid, 'realpath': realpath, 'fiid': fiid, - 'id': id, 'db_type': db_type + 'orgid': orgid, + 'realpath': realpath, + 'fiid': fiid, + 'id': document_id, + 'db_type': db_type }, - rollback_func=rollback_vdb_insert + rollback_func=rollback_all ) - return chunks_data + # ==================== 5. 统计返回 ==================== + stats = { + "text": len([c for c in all_chunks if c["file_type"] == "text"]), + "image": len([c for c in all_chunks if c["file_type"] == "image"]), + "face": len([c for c in all_chunks if c["file_type"] == "face"]) + } + + timings["insert_all"] = time.time() - start + debug( + f"统一插入完成: 文本 {stats['text']}, 图像 {stats['image']}, 人脸 {stats['face']}, 耗时 {timings['insert_all']:.2f}s") + return stats + # async def insert_to_vector_db(self, request, chunks: List[Document], embeddings: List[List[float]], + # realpath: str, orgid: str, fiid: str, id: str, service_params: Dict, + # userid: str, db_type: str, timings: Dict, + # transaction_mgr: TransactionManager = None): + # """插入向量数据库""" + # debug(f"准备数据并调用插入文件端点: {realpath}") + # filename = os.path.basename(realpath).rsplit('.', 1)[0] + # ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else '' + # upload_time = datetime.now().isoformat() + # + # chunks_data = [ + # { + # "userid": orgid, + # "knowledge_base_id": fiid, + # "text": chunk.page_content, + # "vector": embeddings[i], + # "document_id": id, + # "filename": filename + '.' + ext, + # "file_path": realpath, + # "upload_time": upload_time, + # "file_type": ext, + # } + # for i, chunk in enumerate(chunks) + # ] + # + # start_milvus = time.time() + # for i in range(0, len(chunks_data), 10): + # batch_chunks = chunks_data[i:i + 10] + # debug(f"传入的数据是:{batch_chunks}") + # result = await self.api_service.milvus_insert_document( + # request=request, + # chunks=batch_chunks, + # db_type=db_type, + # upappid=service_params['vdb'], + # apiname="milvus/insertdocument", + # user=userid + # ) + # if result.get("status") != "success": + # raise ValueError(result.get("message", "Milvus 插入失败")) + # + # timings["insert_milvus"] = time.time() - start_milvus + # debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f} 秒") + # + # # 记录事务操作,包含回滚函数 + # if transaction_mgr: + # async def rollback_vdb_insert(data, context): + # try: + # # 防御性检查 + # required_context = ['request', 'service_params', 'userid'] + # missing_context = [k for k in required_context if k not in context or context[k] is None] + # if missing_context: + # raise ValueError(f"回滚上下文缺少字段: {', '.join(missing_context)}") + # + # required_data = ['orgid', 'realpath', 'fiid', 'id', 'db_type'] + # missing_data = [k for k in required_data if k not in data or data[k] is None] + # if missing_data: + # raise ValueError(f"VDB_INSERT 数据缺少字段: {', '.join(missing_data)}") + # + # await self.delete_from_vector_db( + # context['request'], data['orgid'], data['realpath'], + # data['fiid'], data['id'], context['service_params'], + # context['userid'], data['db_type'] + # ) + # return f"已回滚向量数据库插入: {data['id']}" + # except Exception as e: + # error(f"回滚向量数据库失败: document_id={data.get('id', '未知')}, 错误: {str(e)}") + # raise + # + # transaction_mgr.add_operation( + # OperationType.VDB_INSERT, + # { + # 'orgid': orgid, 'realpath': realpath, 'fiid': fiid, + # 'id': id, 'db_type': db_type + # }, + # rollback_func=rollback_vdb_insert + # ) + # + # return chunks_data + # + # async def insert_image_vectors( + # self, + # request, + # multi_results: Dict[str, Dict], + # realpath: str, + # orgid: str, + # fiid: str, + # document_id: str, + # service_params: Dict, + # userid: str, + # db_type: str, + # timings: Dict, + # transaction_mgr: TransactionManager = None + # ) -> tuple[int, int]: + # + # start = time.time() + # image_chunks = [] + # face_chunks = [] + # + # for img_path, info in multi_results.items(): + # # img_name = os.path.basename(img_path) + # + # # 1. 插入整张图 + # if info.get("type") in ["image", "video"] and "vector" in info: + # image_chunks.append({ + # "userid": orgid, + # "knowledge_base_id": fiid, + # "text": f"[Image: {img_path}]", + # "vector": info["vector"], + # "document_id": document_id, + # "filename": os.path.basename(realpath), + # "file_path": realpath, + # "upload_time": datetime.now().isoformat(), + # "file_type": "image" + # }) + # + # # 2. 插入每张人脸 + # face_vecs = info.get("face_vecs") + # face_count = info.get("face_count", 0) + # + # if face_count > 0 and face_vecs and len(face_vecs) == face_count: + # for idx, face_vec in enumerate(face_vecs): + # face_chunks.append({ + # "userid": orgid, + # "knowledge_base_id": fiid, + # "text": f"[Face {idx + 1}/{face_count} in {img_path}]", + # "vector": face_vec, + # "document_id": document_id, + # "filename": os.path.basename(realpath), + # "file_path": realpath, + # "upload_time": datetime.now().isoformat(), + # "file_type": "face", + # }) + # + # if image_chunks: + # for i in range(0, len(image_chunks), 10): + # await self.api_service.milvus_insert_document( + # request=request, + # chunks=image_chunks[i:i + 10], + # upappid=service_params['vdb'], + # apiname="milvus/insertdocument", + # user=userid, + # db_type=db_type + # ) + # + # if face_chunks: + # for i in range(0, len(face_chunks), 10): + # await self.api_service.milvus_insert_document( + # request=request, + # chunks=face_chunks[i:i + 10], + # upappid=service_params['vdb'], + # apiname="milvus/insertdocument", + # user=userid, + # db_type=db_type + # ) + # timings["insert_images"] = time.time() - start + # image_count = len(image_chunks) + # face_count = len(face_chunks) + # + # debug(f"多模态插入完成: 图像 {image_count} 条, 人脸 {face_count} 条") + # + # if transaction_mgr and (image_count + face_count > 0): + # transaction_mgr.add_operation( + # OperationType.IMAGE_VECTORS_INSERT, + # {"images": image_count, "faces": face_count, "document_id": document_id} + # ) + # + # # 记录事务操作,包含回滚函数 + # if transaction_mgr: + # async def rollback_multimodal(data, context): + # try: + # # 防御性检查 + # required_context = ['request', 'service_params', 'userid'] + # missing_context = [k for k in required_context if k not in context or context[k] is None] + # if missing_context: + # raise ValueError(f"回滚上下文缺少字段: {', '.join(missing_context)}") + # + # required_data = ['orgid', 'realpath', 'fiid', 'id', 'db_type'] + # missing_data = [k for k in required_data if k not in data or data[k] is None] + # if missing_data: + # raise ValueError(f"多模态回滚数据缺少字段: {', '.join(missing_data)}") + # + # await self.delete_from_vector_db( + # context['request'], data['orgid'], data['realpath'], + # data['fiid'], data['id'], context['service_params'], + # context['userid'], data['db_type'] + # ) + # return f"已回滚多模态向量: {data['id']}" + # except Exception as e: + # error(f"多模态回滚向量数据库失败: document_id={data.get('id', '未知')}, 错误: {str(e)}") + # raise + # + # transaction_mgr.add_operation( + # OperationType.VDB_INSERT, + # { + # 'orgid': orgid, 'realpath': realpath, 'fiid': fiid, + # 'id': id, 'db_type': db_type + # }, + # rollback_func=rollback_multimodal + # ) + # + # return image_count, face_count async def insert_to_vector_text(self, request, db_type: str, fields: Dict, service_params: Dict, userid: str, timings: Dict) -> List[Dict]: @@ -383,25 +850,150 @@ class RagOperations: debug(f"三元组匹配总耗时: {timings['triplet_matching']:.3f} 秒") return all_triplets - async def generate_query_vector(self, request, text: str, service_params: Dict, - userid: str, timings: Dict) -> List[float]: - """生成查询向量""" - debug(f"生成查询向量: {text[:200]}...") + async def generate_query_vector( + self, + request, + text: str, + service_params: Dict, + userid: str, + timings: Dict, + embedding_mode: int = 0 + ) -> List[float]: + """生成查询向量(支持文本/多模态)""" + debug(f"生成查询向量: mode={embedding_mode}, text='{text[:100]}...'") start_vector = time.time() - query_vector = await self.api_service.get_embeddings( - request=request, - texts=[text], - upappid=service_params['embedding'], - apiname="BAAI/bge-m3", - user=userid - ) - if not query_vector or not all(len(vec) == 1024 for vec in query_vector): - raise ValueError("查询向量必须是长度为 1024 的浮点数列表") - query_vector = query_vector[0] + + if embedding_mode == 0: + # === 模式 0:纯文本嵌入(BAAI/bge-m3)=== + debug("使用 BAAI/bge-m3 文本嵌入") + vectors = await self.api_service.get_embeddings( + request=request, + texts=[text], + upappid=service_params['embedding'], + apiname="BAAI/bge-m3", + user=userid + ) + if not vectors or not isinstance(vectors, list) or len(vectors) == 0: + raise ValueError("bge-m3 返回空结果") + query_vector = vectors[0] + if len(query_vector) != 1024: + raise ValueError(f"bge-m3 返回向量维度错误: {len(query_vector)}") + + elif embedding_mode == 1: + # === 模式 1:多模态嵌入(black/clip)=== + debug("使用 black/clip 多模态嵌入") + inputs = [{"type": "text", "content": text}] + + result = await self.api_service.get_multi_embeddings( + request=request, + inputs=inputs, + upappid=service_params['embedding'], + apiname="black/clip", + user=userid + ) + + query_vector = None + for key, info in result.items(): + if info.get("type") == "error": + debug(f"CLIP 返回错误跳过: {info['error']}") + continue + if "vector" in info and isinstance(info["vector"], list) and len(info["vector"]) == 1024: + query_vector = info["vector"] + debug(f"成功获取 CLIP 向量(来自 {info['type']})") + break + + if query_vector is None: + raise ValueError("black/clip 未返回任何有效 1024 维向量") + + else: + raise ValueError(f"不支持的 embedding_mode: {embedding_mode}") + + # 最终统一校验 + if not isinstance(query_vector, list) or len(query_vector) != 1024: + raise ValueError(f"查询向量必须是长度为 1024 的浮点数列表,实际: {len(query_vector)}") + timings["vector_generation"] = time.time() - start_vector - debug(f"生成查询向量耗时: {timings['vector_generation']:.3f} 秒") + debug(f"生成查询向量成功,耗时: {timings['vector_generation']:.3f} 秒,模式: {embedding_mode}") return query_vector + async def generate_image_vector( + self, + request, + img_path: str, + service_params: Dict, + userid: str, + timings: Dict, + embedding_mode: int = 0 + ) -> List[float]: + """生成查询向量(支持文本/多模态)""" + debug(f"生成查询向量: mode={embedding_mode}, image={img_path}") + start_vector = time.time() + + if embedding_mode == 0: + raise ValueError(f"纯文本没有这个功能,请重新选择服务") + + elif embedding_mode == 1: + # === 模式 1:多模态嵌入(black/clip)=== + debug("使用 black/clip 多模态嵌入") + inputs = [] + try: + ext = Path(img_path).suffix.lower() + if ext not in {".png", ".jpg", ".jpeg", ".webp", ".bmp"}: + ext = ".jpg" + + mime_map = { + ".png": "image/png", + ".jpg": "image/jpeg", + ".jpeg": "image/jpeg", + ".webp": "image/webp", + ".bmp": "image/bmp" + } + mime_type = mime_map.get(ext, "image/jpeg") + with open(img_path, "rb") as f: + b64 = base64.b64encode(f.read()).decode("utf-8") + data_uri = f"data:{mime_type};base64,{b64}" + + inputs.append({ + "type": "image", + "data": data_uri + }) + debug(f"已添加图像({mime_type}, {len(b64) / 1024:.1f}KB): {Path(img_path).name}") + + except Exception as e: + debug(f"图像处理失败,跳过: {img_path} → {e}") + + result = await self.api_service.get_multi_embeddings( + request=request, + inputs=inputs, + upappid=service_params['embedding'], + apiname="black/clip", + user=userid + ) + + image_vector = None + for key, info in result.items(): + if info.get("type") == "error": + debug(f"CLIP 返回错误跳过: {info['error']}") + continue + if "vector" in info and isinstance(info["vector"], list) and len(info["vector"]) == 1024: + image_vector = info["vector"] + debug(f"成功获取 CLIP 向量(来自 {info['type']})") + break + + if image_vector is None: + raise ValueError("black/clip 未返回任何有效 1024 维向量") + + else: + raise ValueError(f"不支持的 embedding_mode: {embedding_mode}") + + # 最终统一校验 + if not isinstance(image_vector, list) or len(image_vector) != 1024: + raise ValueError(f"查询向量必须是长度为 1024 的浮点数列表,实际: {len(image_vector)}") + + timings["vector_generation"] = time.time() - start_vector + debug(f"生成查询向量成功,耗时: {timings['vector_generation']:.3f} 秒,模式: {embedding_mode}") + return image_vector + async def vector_search(self, request, query_vector: List[float], orgid: str, fiids: List[str], limit: int, service_params: Dict, userid: str, timings: Dict) -> List[Dict]: @@ -473,34 +1065,49 @@ class RagOperations: return unique_triples def format_search_results(self, results: List[Dict], limit: int) -> List[Dict]: - """格式化搜索结果为统一格式""" - formatted_results = [] - # for res in results[:limit]: - # score = res.get('rerank_score', res.get('distance', 0)) - # - # content = res.get('text', '') - # title = res.get('metadata', {}).get('filename', 'Untitled') - # document_id = res.get('metadata', {}).get('document_id', '') - # - # formatted_results.append({ - # "content": content, - # "title": title, - # "metadata": {"document_id": document_id, "score": score}, - # }) - #得分归一化 + formatted = [] for res in results[:limit]: - rerank_score = res.get('rerank_score', 0) - score = 1 / (1 + math.exp(-rerank_score)) if rerank_score is not None else 1 - res.get('distance', 0) - score = max(0.0, min(1.0, score)) - - content = res.get('text', '') - title = res.get('metadata', {}).get('filename', 'Untitled') - document_id = res.get('metadata', {}).get('document_id', '') - - formatted_results.append({ - "content": content, - "title": title, - "metadata": {"document_id": document_id, "score": score}, + # # 优先 rerank,其次用向量相似度(直接用,不要反) + # if res.get('rerank_score') is not None: + # score = res.get('rerank_score') + # else: + # score = res.get('distance', 0.0) + distance = res.get('distance', 0.0) + rerank_score = res.get('rerank_score', 0.0) + formatted.append({ + "content": res.get('text', ''), + "title": res.get('metadata', {}).get('filename', 'Untitled'), + "metadata": { + "document_id": res.get('metadata', {}).get('document_id', ''), + "distance": distance, + "rerank_score": rerank_score, + } }) + return formatted - return formatted_results \ No newline at end of file + # async def save_uploaded_photo(self, image_file: FileStorage, orgid: str) -> str: + # """ + # 把前端上传的图片保存到 /home/wangmeihua/kyrag/data/photo 目录下 + # 返回保存后的绝对路径(字符串),供 generate_img_vector 使用 + # """ + # if not image_file or not hasattr(image_file, "filename"): + # raise ValueError("无效的图片上传对象") + # + # # 为了安全,按 orgid 分目录存放(避免不同公司文件混在一起) + # org_dir = UPLOAD_PHOTO_DIR / orgid + # org_dir.mkdir(parents=True, exist_ok=True) + # + # # 生成唯一文件名,保留原始后缀 + # suffix = Path(image_file.filename).suffix.lower() + # if not suffix or suffix not in {".jpg", ".jpeg", ".png", ".webp", ".bmp", ".gif"}: + # suffix = ".jpg" + # + # unique_name = f"{uuid.uuid4().hex}{suffix}" + # save_path = org_dir / unique_name + # + # # 真正落盘 + # image_file.save(str(save_path)) + # debug(f"图片已保存: {save_path} (原始名: {image_file.filename})") + # + # # 返回字符串路径,generate_img_vector 直接收 str 就行 + # return str(save_path) \ No newline at end of file diff --git a/rag/ragapi.py b/rag/ragapi.py index 9174b00..96b783c 100644 --- a/rag/ragapi.py +++ b/rag/ragapi.py @@ -6,8 +6,12 @@ import traceback import json import math import uuid -from rag.service_opts import get_service_params, sor_get_service_params +import os +from rag.service_opts import get_service_params, sor_get_service_params, sor_get_embedding_mode, get_embedding_mode from rag.rag_operations import RagOperations +from langchain_core.documents import Document + +REAL_PHOTO_ROOT = "/home/wangmeihua/kyrag/files" helptext = """kyrag API: @@ -133,7 +137,16 @@ async def fusedsearch(request, params_kw, *params): debug(f"params_kw: {params_kw}") # orgid = "04J6VbxLqB_9RPMcgOv_8" # userid = "04J6VbxLqB_9RPMcgOv_8" - query = params_kw.get('query', '') + query = params_kw.get('query', '').strip() + img_path = params_kw.get('image') + if isinstance(img_path, str): + img_path = img_path.strip() + relative_part = img_path.lstrip("/") + real_img_path = os.path.join(REAL_PHOTO_ROOT, relative_part) + if not os.path.exists(real_img_path): + raise FileNotFoundError(f"图片不存在: {real_img_path}") + img_path = real_img_path + debug(f"自动修复图片路径成功: {img_path}") # 统一模式处理 limit 参数,为了对接dify和coze raw_limit = params_kw.get('limit') or ( params_kw.get('retrieval_setting', {}).get('top_k') @@ -188,43 +201,211 @@ async def fusedsearch(request, params_kw, *params): service_params = await get_service_params(orgid) if not service_params: raise ValueError("无法获取服务参数") + # 获取嵌入模式 + embedding_mode = await get_embedding_mode(orgid) + debug(f"检测到 embedding_mode = {embedding_mode}(0=文本, 1=多模态)") - try: - timings = {} - start_time = time.time() - rag_ops = RagOperations() + # 情况1:query 和 image 都为空 → 报错 + if not query and not img_path: + raise ValueError("查询文本和图片不能同时为空") - query_entities = await rag_ops.extract_entities(request, query, service_params, userid, timings) - all_triplets = await rag_ops.match_triplets(request, query, query_entities, orgid, fiids, service_params, - userid, timings) - combined_text = _combine_query_with_triplets(query, all_triplets) - query_vector = await rag_ops.generate_query_vector(request, combined_text, service_params, userid, timings) - search_results = await rag_ops.vector_search(request, query_vector, orgid, fiids, limit + 5, service_params, - userid, timings) + # 情况2:query 和 image 都存在 → 报错(你当前业务不允许同时传) + if query and img_path: + raise ValueError("查询文本和图片只能二选一,不能同时提交") - use_rerank = True - if use_rerank and search_results: - final_results = await rag_ops.rerank_results(request, combined_text, search_results, limit, service_params, + # 3. 只有图片 → 以图搜图 走纯多模态分支 + if img_path and not query: + try: + debug("检测到纯图片查询,执行以图搜图") + rag_ops = RagOperations() + + timings = {} + start_time = time.time() + + # 直接生成图片向量 + img_vector = await rag_ops.generate_image_vector( + request, img_path, service_params, userid, timings, embedding_mode + ) + + # 向量搜索(多取 50 条再截断,和文本分支保持一致) + search_results = await rag_ops.vector_search( + request, img_vector, orgid, fiids, limit + 50, service_params, userid, timings + ) + + timings["total_time"] = time.time() - start_time + + # 可选:搜索完后删除图片,省磁盘(看你需求) + # try: + # os.remove(img_path) + # except: + # pass + + final_results = [] + for item in search_results[:limit]: + final_results.append({ + "text": item["text"], + "distance": item["distance"] + }) + + return { + "results": final_results, + "timings": timings + } + except Exception as e: + error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}") + return { + "records": [], + "timings": {"total_time": time.time() - start_time if 'start_time' in locals() else 0}, + "error": str(e) + } + + if not img_path and query: + try: + timings = {} + start_time = time.time() + rag_ops = RagOperations() + + query_entities = await rag_ops.extract_entities(request, query, service_params, userid, timings) + all_triplets = await rag_ops.match_triplets(request, query, query_entities, orgid, fiids, service_params, + userid, timings) + combined_text = _combine_query_with_triplets(query, all_triplets) + query_vector = await rag_ops.generate_query_vector(request, combined_text, service_params, userid, timings, embedding_mode) + search_results = await rag_ops.vector_search(request, query_vector, orgid, fiids, limit + 50, service_params, userid, timings) - debug(f"final_results: {final_results}") - else: - final_results = [{k: v for k, v in r.items() if k != 'rerank_score'} for r in search_results] - formatted_results = rag_ops.format_search_results(final_results, limit) - timings["total_time"] = time.time() - start_time - info(f"融合搜索完成,返回 {len(formatted_results)} 条结果,总耗时: {timings['total_time']:.3f} 秒") + use_rerank = True + if use_rerank and search_results: + final_results = await rag_ops.rerank_results(request, combined_text, search_results, limit, service_params, + userid, timings) + debug(f"final_results: {final_results}") + else: + final_results = [{k: v for k, v in r.items() if k != 'rerank_score'} for r in search_results] - return { - "records": formatted_results, - "timings": timings - } - except Exception as e: - error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}") - return { - "records": [], - "timings": {"total_time": time.time() - start_time if 'start_time' in locals() else 0}, - "error": str(e) - } + formatted_results = rag_ops.format_search_results(final_results, limit) + timings["total_time"] = time.time() - start_time + debug(f"融合搜索完成,返回 {len(formatted_results)} 条结果,总耗时: {timings['total_time']:.3f} 秒") + + return { + "records": formatted_results, + "timings": timings + } + except Exception as e: + error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}") + return { + "records": [], + "timings": {"total_time": time.time() - start_time if 'start_time' in locals() else 0}, + "error": str(e) + } + +# async def fusedsearch(request, params_kw, *params): +# """ +# 融合搜索,调用服务化端点 +# +# """ +# kw = request._run_ns +# f = kw.get('get_userorgid') +# orgid = await f() +# debug(f"orgid: {orgid},{f=}") +# f = kw.get('get_user') +# userid = await f() +# debug(f"params_kw: {params_kw}") +# # orgid = "04J6VbxLqB_9RPMcgOv_8" +# # userid = "04J6VbxLqB_9RPMcgOv_8" +# query = params_kw.get('query', '') +# # 统一模式处理 limit 参数,为了对接dify和coze +# raw_limit = params_kw.get('limit') or ( +# params_kw.get('retrieval_setting', {}).get('top_k') +# if isinstance(params_kw.get('retrieval_setting'), dict) +# else None +# ) +# +# # 标准化为整数值 +# if raw_limit is None: +# limit = 5 # 两个来源都不存在时使用默认值 +# elif isinstance(raw_limit, (int, float)): +# limit = int(raw_limit) # 数值类型直接转换 +# elif isinstance(raw_limit, str): +# try: +# # 字符串转换为整数 +# limit = int(raw_limit) +# except (TypeError, ValueError): +# limit = 5 # 转换失败使用默认值 +# else: +# limit = 5 # 其他意外类型使用默认值 +# debug(f"limit: {limit}") +# raw_fiids = params_kw.get('fiids') or params_kw.get('knowledge_id') # +# +# # 标准化为列表格式 +# if raw_fiids is None: +# fiids = [] # 两个参数都不存在 +# elif isinstance(raw_fiids, list): +# fiids = [str(item).strip() for item in raw_fiids] # 已经是列表 +# elif isinstance(raw_fiids, str): +# # fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()] +# try: +# # 尝试解析 JSON 字符串 +# parsed = json.loads(raw_fiids) +# if isinstance(parsed, list): +# fiids = [str(item).strip() for item in parsed] # JSON 数组转为字符串列表 +# else: +# # 处理逗号分隔的字符串或单个 ID 字符串 +# fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()] +# except json.JSONDecodeError: +# # 如果不是合法 JSON,按逗号分隔 +# fiids = [f.strip() for f in raw_fiids.split(',') if f.strip()] +# elif isinstance(raw_fiids, (int, float)): +# fiids = [str(int(raw_fiids))] # 数值类型转为字符串列表 +# else: +# fiids = [] # 其他意外类型 +# +# debug(f"fiids: {fiids}") +# +# # 验证 fiids的orgid与orgid = await f()是否一致 +# await _validate_fiids_orgid(fiids, orgid, kw) +# +# service_params = await get_service_params(orgid) +# if not service_params: +# raise ValueError("无法获取服务参数") +# # 获取嵌入模式 +# embedding_mode = await get_embedding_mode(orgid) +# debug(f"检测到 embedding_mode = {embedding_mode}(0=文本, 1=多模态)") +# +# try: +# timings = {} +# start_time = time.time() +# rag_ops = RagOperations() +# +# query_entities = await rag_ops.extract_entities(request, query, service_params, userid, timings) +# all_triplets = await rag_ops.match_triplets(request, query, query_entities, orgid, fiids, service_params, +# userid, timings) +# combined_text = _combine_query_with_triplets(query, all_triplets) +# query_vector = await rag_ops.generate_query_vector(request, combined_text, service_params, userid, timings, embedding_mode) +# search_results = await rag_ops.vector_search(request, query_vector, orgid, fiids, limit + 50, service_params, +# userid, timings) +# +# use_rerank = False +# if use_rerank and search_results: +# final_results = await rag_ops.rerank_results(request, combined_text, search_results, limit, service_params, +# userid, timings) +# debug(f"final_results: {final_results}") +# else: +# final_results = [{k: v for k, v in r.items() if k != 'rerank_score'} for r in search_results] +# +# formatted_results = rag_ops.format_search_results(final_results, limit) +# timings["total_time"] = time.time() - start_time +# debug(f"融合搜索完成,返回 {len(formatted_results)} 条结果,总耗时: {timings['total_time']:.3f} 秒") +# +# return { +# "records": formatted_results, +# "timings": timings +# } +# except Exception as e: +# error(f"融合搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}") +# return { +# "records": [], +# "timings": {"total_time": time.time() - start_time if 'start_time' in locals() else 0}, +# "error": str(e) +# } # async def text_insert(text: str, fiid: str, orgid: str, db_type: str): async def textinsert(request, params_kw, *params): @@ -254,7 +435,7 @@ async def textinsert(request, params_kw, *params): result = { "status": "error", "userid": orgid, - "collection_name": "ragdb_{dbtype}", + "collection_name": f"ragdb_{db_type}", "message": "", "status_code": 400 } @@ -277,10 +458,10 @@ async def textinsert(request, params_kw, *params): # 插入 Milvus fields = { "text": text, - "fiid": fiid, - "orgid": orgid, + "knowledge_base_id": fiid, + "userid": orgid, "vector": embedding, - "id": id + "document_id": id } chunks_data = await rag_ops.insert_to_vector_text(request, db_type, fields, service_params, userid, timings) diff --git a/rag/service_opts.py b/rag/service_opts.py index 37f3b77..559ade5 100644 --- a/rag/service_opts.py +++ b/rag/service_opts.py @@ -57,11 +57,12 @@ async def sor_get_service_params(sor, orgid): service_params['reranker'] = service['upappid'] elif name == 'mrebel三元组抽取': service_params['triples'] = service['upappid'] - elif name == 'neo4j删除知识库': + elif name == 'neo4j图知识库': service_params['gdb'] = service['upappid'] elif name == 'small实体抽取': service_params['entities'] = service['upappid'] - + elif name == 'clip多模态嵌入服务': + service_params['embedding'] = service['upappid'] # 检查是否所有服务参数都已填充 missing_services = [k for k, v in service_params.items() if v is None] if missing_services: @@ -76,3 +77,25 @@ async def get_service_params(orgid): async with db.sqlorContext(dbname) as sor: return await sor_get_service_params(sor, orgid) return None + +async def sor_get_embedding_mode(sor, orgid) -> int: + """根据 orgid 获取嵌入模式:0=纯文本,1=多模态""" + sql = """ + SELECT em.mode + FROM service_opts so + JOIN embedding_mode em ON so.embedding_id = em.embeddingid + WHERE so.orgid = ${orgid}$ + """ + rows = await sor.sqlExe(sql, {"orgid": orgid}) + if not rows: + debug(f"orgid={orgid} 未配置 embedding_mode,默认为 0(纯文本)") + return 0 + return int(rows[0].mode) + +async def get_embedding_mode(orgid): + db = DBPools() + # debug(f"传入的orgid是:{orgid}") + dbname = get_serverenv('get_module_dbname')('rag') + async with db.sqlorContext(dbname) as sor: + return await sor_get_embedding_mode(sor, orgid) + return None \ No newline at end of file diff --git a/rag/transaction_manager.py b/rag/transaction_manager.py index 6303549..92d1294 100644 --- a/rag/transaction_manager.py +++ b/rag/transaction_manager.py @@ -20,7 +20,6 @@ class OperationType(Enum): VECTOR_SEARCH = "vector_search" RERANK = "rerank" - @dataclass class RollbackOperation: """回滚操作记录""" diff --git a/rag/uapi_service.py b/rag/uapi_service.py index c429dc5..1d2ed6c 100644 --- a/rag/uapi_service.py +++ b/rag/uapi_service.py @@ -45,6 +45,43 @@ class APIService: error(f"request #{request_id} 嵌入服务调用失败: {str(e)}, upappid={upappid}, apiname={apiname}") raise RuntimeError(f"嵌入服务调用失败: {str(e)}") + #多模态嵌入服务 + async def get_multi_embeddings( + self, + request, + inputs: List[Dict], + upappid: str, + apiname: str, + user: str + ) -> Dict[str, Dict]: + """ + 多模态统一嵌入(支持文本、图片、音频、视频) + 返回原始输入字符串为 key 的完整结果,含 type / vector / 人脸信息 + """ + request_id = str(uuid.uuid4()) + debug(f"Request #{request_id} 多模态嵌入开始,共{len(inputs)}项") + + if not inputs or not isinstance(inputs, list): + raise ValueError("inputs 必须为非空列表") + + try: + uapi = UAPI(request, DictObject(**globals())) + params_kw = {"inputs": inputs} + b = await uapi.call(upappid, apiname, user, params_kw) + d = await self.handle_uapi_response(b, upappid, apiname, "多模态嵌入服务", request_id) + + if d.get("object") != "embedding.result" or "data" not in d: + error(f"request #{request_id} 返回格式错误: {d}") + raise RuntimeError("多模态嵌入返回格式错误") + + result = d["data"] # 直接返回 {input_str: {type, vector, ...}} + debug(f"request #{request_id} 成功获取 {len(result)} 条多模态向量") + return result + + except Exception as e: + error(f"request #{request_id} 多模态嵌入失败: {str(e)}") + raise RuntimeError(f"多模态嵌入失败: {str(e)}") + # 实体提取服务 (LTP/small) async def extract_entities(self, request, query: str, upappid: str, apiname: str, user: str) -> list: """调用实体识别服务""" diff --git a/wwwroot/test.ui b/wwwroot/test.ui index 622ccf2..1a5caa5 100644 --- a/wwwroot/test.ui +++ b/wwwroot/test.ui @@ -18,6 +18,11 @@ "editable": true, "rows": 5 }, + { + "uitype": "image", + "name": "image", + "label": "上传查询图片(可选)" + }, { "name": "fiids", "uitype": "checkbox", diff --git a/wwwroot/test_query.dspy b/wwwroot/test_query.dspy index 381290a..6e49ffa 100644 --- a/wwwroot/test_query.dspy +++ b/wwwroot/test_query.dspy @@ -7,14 +7,15 @@ if not orgid: message='请先登录' ) -fiids = params_kw.fiids query = params_kw.query +image = params_kw.image +fiids = params_kw.fiids limit = params_kw.limit -if not query or not fiids or not limit: +if (not query and not image) or not fiids or not limit: return UiError( title='无效输入', - message='请输入查询文本并选择至少一个知识库' + message='请输入查询文本或上传image并选择至少一个知识库和填写返回条数' ) try: diff --git a/wwwroot/test_textinsert.dspy b/wwwroot/test_textinsert.dspy new file mode 100644 index 0000000..f22e396 --- /dev/null +++ b/wwwroot/test_textinsert.dspy @@ -0,0 +1,9 @@ +debug(f'{params_kw=}') +text = params_kw.text +fiid = params_kw.fiid +db_type = params_kw.db_type +env = DictObject(**globals()) +keys = [k for k in env.keys()] +debug(f'{keys=}') +x = await rfexe('textinsert', request, params_kw) +return x