调用neo4j服务
This commit is contained in:
parent
e55b8b7052
commit
5eeaa77e22
@ -1,10 +1,8 @@
|
||||
from appPublic.jsonConfig import getConfig
|
||||
import os
|
||||
from appPublic.log import debug, error, info
|
||||
import yaml
|
||||
from threading import Lock
|
||||
from llmengine.base_connection import connection_register
|
||||
from typing import Dict, List, Any
|
||||
import numpy as np
|
||||
import aiohttp
|
||||
from aiohttp import ClientSession, ClientTimeout
|
||||
from langchain_core.documents import Document
|
||||
@ -12,49 +10,52 @@ from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from filetxt.loader import fileloader
|
||||
from llmengine.kgc import KnowledgeGraph
|
||||
import numpy as np
|
||||
from py2neo import Graph
|
||||
from scipy.spatial.distance import cosine
|
||||
import time
|
||||
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
|
||||
import traceback
|
||||
import asyncio
|
||||
import re
|
||||
|
||||
# 嵌入缓存
|
||||
EMBED_CACHE = {}
|
||||
|
||||
class MilvusConnection:
|
||||
_instance = None
|
||||
_lock = Lock()
|
||||
|
||||
def __new__(cls):
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
cls._instance = super(MilvusConnection, cls).__new__(cls)
|
||||
cls._instance._initialized = False
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
if self._initialized:
|
||||
return
|
||||
pass
|
||||
|
||||
@retry(stop = stop_after_attempt(3))
|
||||
async def _make_neo4japi_request(self, action: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
||||
debug(f"开始API请求:action={action}, params={params}")
|
||||
try:
|
||||
config = getConfig()
|
||||
self.neo4j_uri = config['neo4j']['uri']
|
||||
self.neo4j_user = config['neo4j']['user']
|
||||
self.neo4j_password = config['neo4j']['password']
|
||||
except KeyError as e:
|
||||
error(f"配置文件缺少必要字段: {str(e)}")
|
||||
raise RuntimeError(f"配置文件缺少必要字段: {str(e)}")
|
||||
self._initialized = True
|
||||
info("Neo4jConnection initialized")
|
||||
async with ClientSession(timeout=ClientTimeout(total=300)) as session:
|
||||
url = f"http://localhost:8885/v1/{action}"
|
||||
debug(f"发起POST请求:{url}")
|
||||
async with session.post(
|
||||
url,
|
||||
headers={'Content-Type': 'application/json'},
|
||||
json=params
|
||||
) as response:
|
||||
debug(f"收到相应: status={response.status}, headers={response.headers}")
|
||||
respose_text = await response.text()
|
||||
debug(f"响应内容: {respose_text}")
|
||||
result = await response.json()
|
||||
debug(f"API响应内容: {result}")
|
||||
if response.status == 400:
|
||||
debug(f"客户端错误,状态码: {response.status},返回响应: {result}")
|
||||
return result
|
||||
if response.status != 200:
|
||||
error(f"API 调用失败,动作: {action}, 状态码: {response.status}, 响应: {response_text}")
|
||||
raise RuntimeError(f"API 调用失败: {response.status}")
|
||||
debug(f"API 调用成功: {action}, 响应: {result}")
|
||||
return result
|
||||
except Exception as e:
|
||||
error(f"API 调用失败: {action}, 错误: {str(e)}, 堆栈: {traceback.format_exc()}")
|
||||
raise RuntimeError(f"API 调用失败: {str(e)}")
|
||||
|
||||
@retry(stop=stop_after_attempt(3))
|
||||
async def _make_api_request(self, action: str, params: Dict[str, Any]) -> Dict[str, Any]:
|
||||
debug(f"开始 API 请求: action={action}, params={params}")
|
||||
try:
|
||||
async with ClientSession(timeout=ClientTimeout(total=10)) as session:
|
||||
async with ClientSession(timeout=ClientTimeout(total=300)) as session:
|
||||
url = f"http://localhost:8886/v1/{action}"
|
||||
debug(f"发起 POST 请求: {url}")
|
||||
async with session.post(
|
||||
@ -377,15 +378,28 @@ class MilvusConnection:
|
||||
f"三元组抽取耗时: {timings['extract_triples']:.2f} 秒, 抽取到 {len(unique_triples)} 个三元组: {unique_triples[:5]}")
|
||||
|
||||
# Neo4j 插入
|
||||
debug(f"抽取到 {len(unique_triples)} 个三元组,插入 Neo4j")
|
||||
debug(f"抽取到 {len(unique_triples)} 个三元组,调用Neo4j服务插入")
|
||||
start_neo4j = time.time()
|
||||
if unique_triples:
|
||||
kg = KnowledgeGraph(triples=unique_triples, document_id=document_id,
|
||||
knowledge_base_id=knowledge_base_id, userid=userid)
|
||||
kg.create_graphnodes()
|
||||
kg.create_graphrels()
|
||||
kg.export_data()
|
||||
info(f"文件 {file_path} 三元组成功插入 Neo4j")
|
||||
neo4j_result = await self._make_neo4japi_request("inserttriples", {
|
||||
"triples":unique_triples,
|
||||
"document_id": document_id,
|
||||
"knowledge_base_id": knowledge_base_id,
|
||||
"userid": userid
|
||||
})
|
||||
debug(f"Neo4j服务响应: {neo4j_result}")
|
||||
if neo4j_result.get("status") != "success":
|
||||
timings["insert_neo4j"] = time.time() - start_neo4j
|
||||
timings["total"] = time.time() - start_total
|
||||
return{
|
||||
"status": "error",
|
||||
"document_id": document_id,
|
||||
"collection_name": collection_name,
|
||||
"timings": timings,
|
||||
"message": f"Neo4j 三元组插入失败: {neo4j_result.get('message', '未知错误')}",
|
||||
"status_code": 400
|
||||
}
|
||||
info(f"文件 {file_path} 三元组成功插入 Neo4j: {neo4j_result.get('message')}")
|
||||
else:
|
||||
debug(f"文件 {file_path} 未抽取到三元组")
|
||||
timings["insert_neo4j"] = time.time() - start_neo4j
|
||||
@ -519,33 +533,28 @@ class MilvusConnection:
|
||||
|
||||
document_ids = milvus_result.get("document_id", "").split(",") if milvus_result.get("document_id") else []
|
||||
|
||||
# 调用 Neo4j 删除端点
|
||||
neo4j_deleted_nodes = 0
|
||||
neo4j_deleted_rels = 0
|
||||
|
||||
# 删除 Neo4j 数据
|
||||
for doc_id in document_ids:
|
||||
if not doc_id:
|
||||
continue
|
||||
try:
|
||||
graph = Graph(self.neo4j_uri, auth=(self.neo4j_user, self.neo4j_password))
|
||||
query = """
|
||||
MATCH (n {document_id: $document_id})
|
||||
OPTIONAL MATCH (n)-[r {document_id: $document_id}]->()
|
||||
WITH collect(r) AS rels, collect(n) AS nodes
|
||||
FOREACH (r IN rels | DELETE r)
|
||||
FOREACH (n IN nodes | DELETE n)
|
||||
RETURN size(nodes) AS node_count, size(rels) AS rel_count, [r IN rels | type(r)] AS rel_types
|
||||
"""
|
||||
result = graph.run(query, document_id=doc_id).data()
|
||||
nodes_deleted = result[0]['node_count'] if result else 0
|
||||
rels_deleted = result[0]['rel_count'] if result else 0
|
||||
rel_types = result[0]['rel_types'] if result else []
|
||||
info(
|
||||
f"成功删除 document_id={doc_id} 的 {nodes_deleted} 个 Neo4j 节点和 {rels_deleted} 个关系,关系类型: {rel_types}")
|
||||
debug(f"调用 Neo4j 删除文档端点: document_id={doc_id}")
|
||||
neo4j_result = await self._make_neo4japi_request("deletedocument", {
|
||||
"document_id": doc_id
|
||||
})
|
||||
if neo4j_result.get("status") != "success":
|
||||
error(
|
||||
f"Neo4j 删除文档失败: document_id={doc_id}, 错误: {neo4j_result.get('message', '未知错误')}")
|
||||
continue
|
||||
nodes_deleted = neo4j_result.get("nodes_deleted", 0)
|
||||
rels_deleted = neo4j_result.get("rels_deleted", 0)
|
||||
neo4j_deleted_nodes += nodes_deleted
|
||||
neo4j_deleted_rels += rels_deleted
|
||||
info(f"成功删除 document_id={doc_id} 的 {nodes_deleted} 个 Neo4j 节点和 {rels_deleted} 个关系")
|
||||
except Exception as e:
|
||||
error(f"删除 document_id={doc_id} 的 Neo4j 三元组失败: {str(e)}")
|
||||
error(f"删除 document_id={doc_id} 的 Neo4j 数据失败: {str(e)}")
|
||||
continue
|
||||
|
||||
return {
|
||||
@ -584,30 +593,30 @@ class MilvusConnection:
|
||||
|
||||
deleted_files = milvus_result.get("deleted_files", [])
|
||||
|
||||
# 删除 Neo4j 数据
|
||||
# 新增:调用 Neo4j 删除知识库端点
|
||||
neo4j_deleted_nodes = 0
|
||||
neo4j_deleted_rels = 0
|
||||
try:
|
||||
debug(f"尝试连接 Neo4j: uri={self.neo4j_uri}, user={self.neo4j_user}")
|
||||
graph = Graph(self.neo4j_uri, auth=(self.neo4j_user, self.neo4j_password))
|
||||
debug("Neo4j 连接成功")
|
||||
query = """
|
||||
MATCH (n {userid: $userid, knowledge_base_id: $knowledge_base_id})
|
||||
OPTIONAL MATCH (n)-[r {userid: $userid, knowledge_base_id: $knowledge_base_id}]->()
|
||||
WITH collect(r) AS rels, collect(n) AS nodes
|
||||
FOREACH (r IN rels | DELETE r)
|
||||
FOREACH (n IN nodes | DELETE n)
|
||||
RETURN size(nodes) AS node_count, size(rels) AS rel_count, [r IN rels | type(r)] AS rel_types
|
||||
"""
|
||||
result = graph.run(query, userid=userid, knowledge_base_id=knowledge_base_id).data()
|
||||
nodes_deleted = result[0]['node_count'] if result else 0
|
||||
rels_deleted = result[0]['rel_count'] if result else 0
|
||||
rel_types = result[0]['rel_types'] if result else []
|
||||
neo4j_deleted_nodes += nodes_deleted
|
||||
neo4j_deleted_rels += rels_deleted
|
||||
info(f"成功删除 {nodes_deleted} 个 Neo4j 节点和 {rels_deleted} 个关系,关系类型: {rel_types}")
|
||||
debug(f"调用 Neo4j 删除知识库端点: userid={userid}, knowledge_base_id={knowledge_base_id}")
|
||||
neo4j_result = await self._make_neo4japi_request("deleteknowledgebase", {
|
||||
"userid": userid,
|
||||
"knowledge_base_id": knowledge_base_id
|
||||
})
|
||||
if neo4j_result.get("status") == "success":
|
||||
neo4j_deleted_nodes = neo4j_result.get("nodes_deleted", 0)
|
||||
neo4j_deleted_rels = neo4j_result.get("rels_deleted", 0)
|
||||
info(f"成功删除 {neo4j_deleted_nodes} 个 Neo4j 节点和 {neo4j_deleted_rels} 个关系")
|
||||
else:
|
||||
error(f"Neo4j 删除知识库失败: {neo4j_result.get('message', '未知错误')}")
|
||||
return {
|
||||
"status": "success",
|
||||
"collection_name": collection_name,
|
||||
"deleted_files": deleted_files,
|
||||
"message": f"成功删除 Milvus 知识库,{neo4j_deleted_nodes} 个 Neo4j 节点,{neo4j_deleted_rels} 个 Neo4j 关系,但 Neo4j 删除失败: {neo4j_result.get('message')}",
|
||||
"status_code": 200
|
||||
}
|
||||
except Exception as e:
|
||||
error(f"删除 Neo4j 数据失败: {str(e)}")
|
||||
error(f"Neo4j 删除知识库失败: {str(e)}")
|
||||
return {
|
||||
"status": "success",
|
||||
"collection_name": collection_name,
|
||||
@ -672,119 +681,6 @@ class MilvusConnection:
|
||||
error(f"实体识别服务调用失败: {str(e)}")
|
||||
return []
|
||||
|
||||
async def _match_triplets(self, query: str, query_entities: List[str], userid: str, knowledge_base_id: str) -> List[Dict]:
|
||||
"""匹配查询实体与 Neo4j 中的三元组"""
|
||||
start_time = time.time() # 记录开始时间
|
||||
matched_triplets = []
|
||||
ENTITY_SIMILARITY_THRESHOLD = 0.8
|
||||
|
||||
try:
|
||||
graph = Graph(self.neo4j_uri, auth=(self.neo4j_user, self.neo4j_password))
|
||||
debug(f"已连接到 Neo4j: {self.neo4j_uri}")
|
||||
neo4j_connect_time = time.time() - start_time
|
||||
debug(f"Neo4j 连接耗时: {neo4j_connect_time:.3f} 秒")
|
||||
|
||||
matched_names = set()
|
||||
entity_match_start = time.time()
|
||||
for entity in query_entities:
|
||||
normalized_entity = entity.lower().strip()
|
||||
query = """
|
||||
MATCH (n {userid: $userid, knowledge_base_id: $knowledge_base_id})
|
||||
WHERE toLower(n.name) CONTAINS $entity
|
||||
OR apoc.text.levenshteinSimilarity(toLower(n.name), $entity) > 0.7
|
||||
RETURN n.name, apoc.text.levenshteinSimilarity(toLower(n.name), $entity) AS sim
|
||||
ORDER BY sim DESC
|
||||
LIMIT 100
|
||||
"""
|
||||
try:
|
||||
results = graph.run(query, userid=userid, knowledge_base_id=knowledge_base_id, entity=normalized_entity).data()
|
||||
for record in results:
|
||||
matched_names.add(record['n.name'])
|
||||
debug(f"实体 {entity} 匹配节点: {record['n.name']} (Levenshtein 相似度: {record['sim']:.2f})")
|
||||
except Exception as e:
|
||||
debug(f"模糊匹配实体 {entity} 失败: {str(e)}")
|
||||
continue
|
||||
entity_match_time = time.time() - entity_match_start
|
||||
debug(f"实体匹配耗时: {entity_match_time:.3f} 秒")
|
||||
|
||||
triplets = []
|
||||
if matched_names:
|
||||
triplet_query_start = time.time()
|
||||
query = """
|
||||
MATCH (h {userid: $userid, knowledge_base_id: $knowledge_base_id})-[r {userid: $userid, knowledge_base_id: $knowledge_base_id}]->(t {userid: $userid, knowledge_base_id: $knowledge_base_id})
|
||||
WHERE h.name IN $matched_names OR t.name IN $matched_names
|
||||
RETURN h.name AS head, r.name AS type, t.name AS tail
|
||||
LIMIT 100
|
||||
"""
|
||||
try:
|
||||
results = graph.run(query, userid=userid, knowledge_base_id=knowledge_base_id, matched_names=list(matched_names)).data()
|
||||
seen = set()
|
||||
for record in results:
|
||||
head, type_, tail = record['head'], record['type'], record['tail']
|
||||
triplet_key = (head.lower(), type_.lower(), tail.lower())
|
||||
if triplet_key not in seen:
|
||||
seen.add(triplet_key)
|
||||
triplets.append({
|
||||
'head': head,
|
||||
'type': type_,
|
||||
'tail': tail,
|
||||
'head_type': '',
|
||||
'tail_type': ''
|
||||
})
|
||||
debug(f"从 Neo4j 加载三元组: knowledge_base_id={knowledge_base_id}, 数量={len(triplets)}")
|
||||
except Exception as e:
|
||||
error(f"检索三元组失败: knowledge_base_id={knowledge_base_id}, 错误: {str(e)}")
|
||||
return []
|
||||
triplet_query_time = time.time() - triplet_query_start
|
||||
debug(f"Neo4j 三元组查询耗时: {triplet_query_time:.3f} 秒")
|
||||
|
||||
if not triplets:
|
||||
debug(f"知识库 knowledge_base_id={knowledge_base_id} 无匹配三元组")
|
||||
return []
|
||||
|
||||
embedding_start = time.time()
|
||||
texts_to_embed = query_entities + [t['head'] for t in triplets] + [t['tail'] for t in triplets]
|
||||
embeddings = await self._get_embeddings(texts_to_embed)
|
||||
entity_vectors = {entity: embeddings[i] for i, entity in enumerate(query_entities)}
|
||||
head_vectors = {t['head']: embeddings[len(query_entities) + i] for i, t in enumerate(triplets)}
|
||||
tail_vectors = {t['tail']: embeddings[len(query_entities) + len(triplets) + i] for i, t in enumerate(triplets)}
|
||||
debug(f"成功获取 {len(embeddings)} 个嵌入向量({len(query_entities)} entities + {len(triplets)} heads + {len(triplets)} tails)")
|
||||
embedding_time = time.time() - embedding_start
|
||||
debug(f"嵌入向量生成耗时: {embedding_time:.3f} 秒")
|
||||
|
||||
similarity_start = time.time()
|
||||
for entity in query_entities:
|
||||
entity_vec = entity_vectors[entity]
|
||||
for d_triplet in triplets:
|
||||
d_head_vec = head_vectors[d_triplet['head']]
|
||||
d_tail_vec = tail_vectors[d_triplet['tail']]
|
||||
head_similarity = 1 - cosine(entity_vec, d_head_vec)
|
||||
tail_similarity = 1 - cosine(entity_vec, d_tail_vec)
|
||||
|
||||
if head_similarity >= ENTITY_SIMILARITY_THRESHOLD or tail_similarity >= ENTITY_SIMILARITY_THRESHOLD:
|
||||
matched_triplets.append(d_triplet)
|
||||
debug(f"匹配三元组: {d_triplet['head']} - {d_triplet['type']} - {d_triplet['tail']} "
|
||||
f"(entity={entity}, head_sim={head_similarity:.2f}, tail_sim={tail_similarity:.2f})")
|
||||
similarity_time = time.time() - similarity_start
|
||||
debug(f"相似度计算耗时: {similarity_time:.3f} 秒")
|
||||
|
||||
unique_matched = []
|
||||
seen = set()
|
||||
for t in matched_triplets:
|
||||
identifier = (t['head'].lower(), t['type'].lower(), t['tail'].lower())
|
||||
if identifier not in seen:
|
||||
seen.add(identifier)
|
||||
unique_matched.append(t)
|
||||
|
||||
total_time = time.time() - start_time
|
||||
debug(f"_match_triplets 总耗时: {total_time:.3f} 秒")
|
||||
info(f"找到 {len(unique_matched)} 个匹配的三元组")
|
||||
return unique_matched
|
||||
|
||||
except Exception as e:
|
||||
error(f"匹配三元组失败: {str(e)}")
|
||||
return []
|
||||
|
||||
async def _rerank_results(self, query: str, results: List[Dict], top_n: int) -> List[Dict]:
|
||||
"""调用重排序服务"""
|
||||
try:
|
||||
@ -936,14 +832,28 @@ class MilvusConnection:
|
||||
timing_stats["entity_extraction"] = time.time() - entity_extract_start
|
||||
debug(f"提取实体: {query_entities}, 耗时: {timing_stats['entity_extraction']:.3f} 秒")
|
||||
|
||||
# 匹配三元组
|
||||
# 调用 Neo4j 服务进行三元组匹配
|
||||
all_triplets = []
|
||||
triplet_match_start = time.time()
|
||||
for kb_id in knowledge_base_ids:
|
||||
debug(f"处理知识库: {kb_id}")
|
||||
matched_triplets = await self._match_triplets(query, query_entities, userid, kb_id)
|
||||
debug(f"知识库 {kb_id} 匹配三元组: {len(matched_triplets)} 条")
|
||||
all_triplets.extend(matched_triplets)
|
||||
debug(f"调用 Neo4j 三元组匹配: knowledge_base_id={kb_id}")
|
||||
try:
|
||||
neo4j_result = await self._make_neo4japi_request("matchtriplets", {
|
||||
"query": query,
|
||||
"query_entities": query_entities,
|
||||
"userid": userid,
|
||||
"knowledge_base_id": kb_id
|
||||
})
|
||||
if neo4j_result.get("status") == "success":
|
||||
triplets = neo4j_result.get("triplets", [])
|
||||
all_triplets.extend(triplets)
|
||||
debug(f"知识库 {kb_id} 匹配到 {len(triplets)} 个三元组: {triplets[:5]}")
|
||||
else:
|
||||
error(
|
||||
f"Neo4j 三元组匹配失败: knowledge_base_id={kb_id}, 错误: {neo4j_result.get('message', '未知错误')}")
|
||||
except Exception as e:
|
||||
error(f"Neo4j 三元组匹配失败: knowledge_base_id={kb_id}, 错误: {str(e)}")
|
||||
continue
|
||||
timing_stats["triplet_matching"] = time.time() - triplet_match_start
|
||||
debug(f"三元组匹配总耗时: {timing_stats['triplet_matching']:.3f} 秒")
|
||||
|
||||
@ -977,7 +887,7 @@ class MilvusConnection:
|
||||
|
||||
# 调用融合搜索端点
|
||||
search_start = time.time()
|
||||
result = await self._make_api_request("searchquery", { # 注意:使用 searchquery 端点
|
||||
result = await self._make_api_request("searchquery", {
|
||||
"query_vector": query_vector.tolist(),
|
||||
"userid": userid,
|
||||
"knowledge_base_ids": knowledge_base_ids,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user