This commit is contained in:
wangmeihua 2025-11-12 15:15:52 +08:00
parent 07e9712961
commit 3a726ef958
4 changed files with 613 additions and 68 deletions

View File

@ -17,13 +17,15 @@ import traceback
from filetxt.loader import fileloader,File2Text
from ahserver.serverenv import get_serverenv
from typing import List, Dict, Any
from rag.service_opts import get_service_params, sor_get_service_params
from rag.service_opts import get_service_params, sor_get_service_params, sor_get_embedding_mode, get_embedding_mode
from rag.fileprocess import extract_images_from_file
from rag.rag_operations import RagOperations
import json
from rag.transaction_manager import TransactionContext
from dataclasses import dataclass
from enum import Enum
import base64
from pathlib import Path
class RagFileMgr(FileMgr):
def __init__(self, fiid):
@ -53,6 +55,10 @@ where a.orgid = b.orgid
return r.quota, r.expired_date
return None, None
async def file_to_base64(self,path: str) -> str:
with open(path, "rb") as f:
return base64.b64encode(f.read()).decode("utf-8")
async def file_uploaded(self, request, ns, userid):
"""将文档插入 Milvus 并抽取三元组到 Neo4j"""
debug(f'Received ns: {ns=}')
@ -104,21 +110,107 @@ where a.orgid = b.orgid
raise ValueError("无法获取服务参数")
rollback_context["service_params"] = service_params
#获取嵌入模式
embedding_mode = await get_embedding_mode(orgid)
debug(f"检测到 embedding_mode = {embedding_mode}0=文本, 1=多模态)")
# 加载和分片文档
chunks = await self.rag_ops.load_and_chunk_document(
realpath, timings, transaction_mgr=transaction_mgr
)
text_embeddings = None
multi_results = None
image_paths = []
if embedding_mode == 1:
inputs = []
# 文本
for chunk in chunks:
inputs.append({"type": "text", "content": chunk.page_content})
debug("开始多模态图像抽取与嵌入")
image_paths = extract_images_from_file(realpath)
debug(f"从文档中抽取 {len(image_paths)} 张图像")
if image_paths:
for img_path in image_paths:
try:
# 1. 自动识别真实格式
ext = Path(img_path).suffix.lower()
if ext not in {".png", ".jpg", ".jpeg", ".webp", ".bmp"}:
ext = ".jpg"
mime_map = {
".png": "image/png",
".jpg": "image/jpeg",
".jpeg": "image/jpeg",
".webp": "image/webp",
".bmp": "image/bmp"
}
mime_type = mime_map.get(ext, "image/jpeg")
# # 2. 智能压缩(>1MB 才压缩,节省 70% 流量)
# img = Image.open(img_path).convert("RGB")
# if os.path.getsize(img_path) > 1024 * 1024: # >1MB
# buffer = BytesIO()
# img.save(buffer, format="JPEG", quality=85, optimize=True)
# b64 = base64.b64encode(buffer.getvalue()).decode()
# data_uri = f"data:image/jpeg;base64,{b64}"
# else:
b64 = await self.file_to_base64(img_path)
data_uri = f"data:{mime_type};base64,{b64}"
inputs.append({
"type": "image",
"data": data_uri
})
debug(f"已添加图像({mime_type}, {len(b64) / 1024:.1f}KB: {Path(img_path).name}")
except Exception as e:
debug(f"图像处理失败,跳过: {img_path}{e}")
# 即使失败也加个占位,防止顺序错乱
inputs.append({
"type": "image",
"data": ""
})
debug(f"混排输入总数: {len(inputs)}(文本 {len(chunks)} + 图像 {len(image_paths)}")
multi_results = await self.rag_ops.generate_multi_embeddings(
request=request,
inputs=inputs,
service_params=service_params,
userid=userid,
timings=timings,
transaction_mgr=transaction_mgr
)
debug(f"多模态嵌入成功,返回 {len(multi_results)} 条结果")
else:
# 生成嵌入向量
embeddings = await self.rag_ops.generate_embeddings(
debug("【纯文本模式】使用 BGE 嵌入")
text_embeddings = await self.rag_ops.generate_embeddings(
request, chunks, service_params, userid, timings, transaction_mgr=transaction_mgr
)
debug(f"BGE 嵌入完成: {len(text_embeddings)}")
# 插入 Milvus
chunks_data = await self.rag_ops.insert_to_vector_db(
request, chunks, embeddings, realpath, orgid, fiid, id,
service_params, userid, db_type, timings, transaction_mgr=transaction_mgr
inserted = await self.rag_ops.insert_all_vectors(
request=request,
text_chunks=chunks,
realpath=realpath,
orgid=orgid,
fiid=fiid,
document_id=id,
service_params=service_params,
userid=userid,
db_type=db_type,
timings=timings,
img_paths=image_paths,
text_embeddings=text_embeddings,
multi_results=multi_results,
transaction_mgr=transaction_mgr
)
debug(f"统一插入: 文本 {inserted['text']}, 图像 {inserted['image']}, 人脸 {inserted['face']}")
# 抽取三元组
triples = await self.rag_ops.extract_triples(

View File

@ -103,84 +103,477 @@ class RagOperations:
return embeddings
async def insert_to_vector_db(self, request, chunks: List[Document], embeddings: List[List[float]],
realpath: str, orgid: str, fiid: str, id: str, service_params: Dict,
userid: str, db_type: str, timings: Dict,
transaction_mgr: TransactionManager = None):
"""插入向量数据库"""
debug(f"准备数据并调用插入文件端点: {realpath}")
filename = os.path.basename(realpath).rsplit('.', 1)[0]
ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else ''
async def generate_multi_embeddings(self, request, inputs: List[Dict], service_params: Dict,
userid: str, timings: Dict,
transaction_mgr: TransactionManager = None) -> Dict[str, Dict]:
"""调用多模态嵌入服务CLIP"""
debug("调用多模态嵌入服务")
start = time.time()
result = await self.api_service.get_multi_embeddings(
request=request,
inputs=inputs,
upappid=service_params['embedding'],
apiname="black/clip",
user=userid
)
debug(f"多模态返回结果是{result}")
timings["multi_embedding"] = time.time() - start
debug(f"多模态嵌入耗时: {timings['multi_embedding']:.2f}秒,处理 {len(result)}")
# ==================== 新增:错误检查 + 过滤 ====================
valid_results = {}
error_count = 0
error_examples = []
for key, info in result.items():
if info.get("type") == "error":
error_count += 1
if len(error_examples) < 3: # 只记录前3个
error_examples.append(f"{key}{info['error']}")
# 直接丢弃错误条目
continue
valid_results[key] = info
if error_count > 0:
error(f"多模态嵌入失败 {error_count} 条!示例:{'; '.join(error_examples)}")
raise RuntimeError(f"多模态嵌入有{error_count} 条失败")
else:
debug("多模态嵌入全部成功!")
if transaction_mgr:
transaction_mgr.add_operation(
OperationType.EMBEDDING,
{'count': len(result)}
)
return result
# 统一插入向量库
async def insert_all_vectors(
self,
request,
text_chunks: List[Document],
realpath: str,
orgid: str,
fiid: str,
document_id: str,
service_params: Dict,
userid: str,
db_type: str,
timings: Dict,
img_paths: List[str] = None,
text_embeddings: List[List[float]] = None,
multi_results: Dict = None,
transaction_mgr: TransactionManager = None
) -> Dict[str, int]:
"""
统一插入函数支持两种模式
1. 纯文本模式text_embeddings 有值
2. 多模态模式multi_results 有值来自 generate_multi_embeddings
"""
img_paths = img_paths or []
all_chunks = []
start = time.time()
filename = os.path.basename(realpath)
upload_time = datetime.now().isoformat()
chunks_data = [
{
# ==================== 1. 纯文本模式BGE ====================
if text_embeddings is not None:
debug(f"【纯文本模式】插入 {len(text_embeddings)} 条文本向量")
for i, chunk in enumerate(text_chunks):
all_chunks.append({
"userid": orgid,
"knowledge_base_id": fiid,
"text": chunk.page_content,
"vector": embeddings[i],
"document_id": id,
"filename": filename + '.' + ext,
"vector": text_embeddings[i],
"document_id": document_id,
"filename": filename,
"file_path": realpath,
"upload_time": upload_time,
"file_type": ext,
}
for i, chunk in enumerate(chunks)
]
"file_type": "text",
})
start_milvus = time.time()
for i in range(0, len(chunks_data), 10):
batch_chunks = chunks_data[i:i + 10]
debug(f"传入的数据是:{batch_chunks}")
# ==================== 2. 多模态模式CLIP 混排) ====================
if multi_results is not None:
debug(f"【多模态模式】解析 {len(multi_results)} 条 CLIP 结果")
# 遍历 multi_results
for raw_key, info in multi_results.items():
typ = info["type"]
# --- 文本 ---
if typ == "text":
# raw_key 就是原文
all_chunks.append({
"userid": orgid,
"knowledge_base_id": fiid,
"text": raw_key,
"vector": info["vector"],
"document_id": document_id,
"filename": filename,
"file_path": realpath,
"upload_time": upload_time,
"file_type": "text",
})
continue
# --- 图像 ---
if typ == "image":
img_path = info.get("path") or raw_key
img_name = os.path.basename(img_path)
# 整图向量
if "vector" in info:
all_chunks.append({
"userid": orgid,
"knowledge_base_id": fiid,
"text": f"[Image: {img_path}]图片来源于文件{realpath}",
"vector": info["vector"],
"document_id": document_id,
"filename": img_name,
"file_path": realpath,
"upload_time": upload_time,
"file_type": "image",
})
# 人脸向量
face_vecs = info.get("face_vecs", [])
face_count = len(face_vecs)
# if face_count > 0:
# for f_idx, fvec in enumerate(face_vecs):
# debug(f"人脸向量维度是:{len(fvec)}")
# all_chunks.append({
# "userid": orgid,
# "knowledge_base_id": fiid,
# "text": f"[Face {f_idx + 1}/{face_count} in {img_name}]人脸来源于{realpath}的{img_path}图片",
# "vector": fvec,
# "document_id": document_id,
# "filename": img_name,
# "file_path": realpath,
# "upload_time": upload_time,
# "file_type": "face",
# })
# continue
# --- 视频 ---
if typ == "video":
video_path = info.get("path") or raw_key
video_name = os.path.basename(video_path)
if "vector" in info:
all_chunks.append({
"userid": orgid,
"knowledge_base_id": fiid,
"text": f"[Video: {video_name}]",
"vector": info["vector"],
"document_id": document_id,
"filename": video_path,
"file_path": realpath,
"upload_time": upload_time,
"file_type": "video",
})
# 视频人脸
face_vecs = info.get("face_vecs", [])
face_count = len(face_vecs)
# if face_count > 0 :
# for f_idx, fvec in enumerate(face_vecs):
# all_chunks.append({
# "userid": orgid,
# "knowledge_base_id": fiid,
# "text": f"[Face {f_idx + 1}/{face_count} in video {video_name}]来源于{video_path}",
# "vector": fvec,
# "document_id": document_id,
# "filename": video_path,
# "file_path": realpath,
# "upload_time": upload_time,
# "file_type": "face",
# })
# continue
# --- 音频 ---
if typ == "audio":
audio_path = info.get("path") or raw_key
audio_name = os.path.basename(audio_path)
if "vector" in info:
all_chunks.append({
"userid": orgid,
"knowledge_base_id": fiid,
"text": f"[Audio: {audio_name}]",
"vector": info["vector"],
"document_id": document_id,
"filename": audio_path,
"file_path": realpath,
"upload_time": upload_time,
"file_type": "audio",
})
continue
# --- 未知类型 ---
debug(f"未知类型跳过: {typ}{raw_key}")
# ==================== 3. 批量插入 Milvus ====================
if not all_chunks:
debug("无向量需要插入")
return {"text": 0, "image": 0, "face": 0}
for i in range(0, len(all_chunks), 10):
batch = all_chunks[i:i + 10]
result = await self.api_service.milvus_insert_document(
request=request,
chunks=batch_chunks,
db_type=db_type,
chunks=batch,
upappid=service_params['vdb'],
apiname="milvus/insertdocument",
user=userid
user=userid,
db_type=db_type
)
if result.get("status") != "success":
raise ValueError(result.get("message", "Milvus 插入失败"))
raise ValueError(f"Milvus 插入失败: {result.get('message')}")
timings["insert_milvus"] = time.time() - start_milvus
debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f}")
# 记录事务操作,包含回滚函数
if transaction_mgr:
async def rollback_vdb_insert(data, context):
# ==================== 4. 统一回滚(只登记一次) ====================
if transaction_mgr and all_chunks:
async def rollback_all(data, context):
try:
# 防御性检查
required_context = ['request', 'service_params', 'userid']
missing_context = [k for k in required_context if k not in context or context[k] is None]
if missing_context:
raise ValueError(f"回滚上下文缺少字段: {', '.join(missing_context)}")
required_data = ['orgid', 'realpath', 'fiid', 'id', 'db_type']
missing_data = [k for k in required_data if k not in data or data[k] is None]
if missing_data:
raise ValueError(f"VDB_INSERT 数据缺少字段: {', '.join(missing_data)}")
await self.delete_from_vector_db(
context['request'], data['orgid'], data['realpath'],
data['fiid'], data['id'], context['service_params'],
context['userid'], data['db_type']
request=context['request'],
orgid=data['orgid'],
realpath=data['realpath'],
fiid=data['fiid'],
id=data['document_id'],
service_params=context['service_params'],
userid=context['userid'],
db_type=data['db_type']
)
return f"已回滚向量数据库插入: {data['id']}"
return f"已回滚 document_id={data['document_id']} 的所有向量"
except Exception as e:
error(f"回滚向量数据库失败: document_id={data.get('id', '未知')}, 错误: {str(e)}")
error(f"统一回滚失败: {e}")
raise
transaction_mgr.add_operation(
OperationType.VDB_INSERT,
{
'orgid': orgid, 'realpath': realpath, 'fiid': fiid,
'id': id, 'db_type': db_type
'orgid': orgid,
'realpath': realpath,
'fiid': fiid,
'id': document_id,
'db_type': db_type
},
rollback_func=rollback_vdb_insert
rollback_func=rollback_all
)
return chunks_data
# ==================== 5. 统计返回 ====================
stats = {
"text": len([c for c in all_chunks if c["file_type"] == "text"]),
"image": len([c for c in all_chunks if c["file_type"] == "image"]),
"face": len([c for c in all_chunks if c["file_type"] == "face"])
}
timings["insert_all"] = time.time() - start
debug(
f"统一插入完成: 文本 {stats['text']}, 图像 {stats['image']}, 人脸 {stats['face']}, 耗时 {timings['insert_all']:.2f}s")
return stats
# async def insert_to_vector_db(self, request, chunks: List[Document], embeddings: List[List[float]],
# realpath: str, orgid: str, fiid: str, id: str, service_params: Dict,
# userid: str, db_type: str, timings: Dict,
# transaction_mgr: TransactionManager = None):
# """插入向量数据库"""
# debug(f"准备数据并调用插入文件端点: {realpath}")
# filename = os.path.basename(realpath).rsplit('.', 1)[0]
# ext = realpath.rsplit('.', 1)[1].lower() if '.' in realpath else ''
# upload_time = datetime.now().isoformat()
#
# chunks_data = [
# {
# "userid": orgid,
# "knowledge_base_id": fiid,
# "text": chunk.page_content,
# "vector": embeddings[i],
# "document_id": id,
# "filename": filename + '.' + ext,
# "file_path": realpath,
# "upload_time": upload_time,
# "file_type": ext,
# }
# for i, chunk in enumerate(chunks)
# ]
#
# start_milvus = time.time()
# for i in range(0, len(chunks_data), 10):
# batch_chunks = chunks_data[i:i + 10]
# debug(f"传入的数据是:{batch_chunks}")
# result = await self.api_service.milvus_insert_document(
# request=request,
# chunks=batch_chunks,
# db_type=db_type,
# upappid=service_params['vdb'],
# apiname="milvus/insertdocument",
# user=userid
# )
# if result.get("status") != "success":
# raise ValueError(result.get("message", "Milvus 插入失败"))
#
# timings["insert_milvus"] = time.time() - start_milvus
# debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f} 秒")
#
# # 记录事务操作,包含回滚函数
# if transaction_mgr:
# async def rollback_vdb_insert(data, context):
# try:
# # 防御性检查
# required_context = ['request', 'service_params', 'userid']
# missing_context = [k for k in required_context if k not in context or context[k] is None]
# if missing_context:
# raise ValueError(f"回滚上下文缺少字段: {', '.join(missing_context)}")
#
# required_data = ['orgid', 'realpath', 'fiid', 'id', 'db_type']
# missing_data = [k for k in required_data if k not in data or data[k] is None]
# if missing_data:
# raise ValueError(f"VDB_INSERT 数据缺少字段: {', '.join(missing_data)}")
#
# await self.delete_from_vector_db(
# context['request'], data['orgid'], data['realpath'],
# data['fiid'], data['id'], context['service_params'],
# context['userid'], data['db_type']
# )
# return f"已回滚向量数据库插入: {data['id']}"
# except Exception as e:
# error(f"回滚向量数据库失败: document_id={data.get('id', '未知')}, 错误: {str(e)}")
# raise
#
# transaction_mgr.add_operation(
# OperationType.VDB_INSERT,
# {
# 'orgid': orgid, 'realpath': realpath, 'fiid': fiid,
# 'id': id, 'db_type': db_type
# },
# rollback_func=rollback_vdb_insert
# )
#
# return chunks_data
#
# async def insert_image_vectors(
# self,
# request,
# multi_results: Dict[str, Dict],
# realpath: str,
# orgid: str,
# fiid: str,
# document_id: str,
# service_params: Dict,
# userid: str,
# db_type: str,
# timings: Dict,
# transaction_mgr: TransactionManager = None
# ) -> tuple[int, int]:
#
# start = time.time()
# image_chunks = []
# face_chunks = []
#
# for img_path, info in multi_results.items():
# # img_name = os.path.basename(img_path)
#
# # 1. 插入整张图
# if info.get("type") in ["image", "video"] and "vector" in info:
# image_chunks.append({
# "userid": orgid,
# "knowledge_base_id": fiid,
# "text": f"[Image: {img_path}]",
# "vector": info["vector"],
# "document_id": document_id,
# "filename": os.path.basename(realpath),
# "file_path": realpath,
# "upload_time": datetime.now().isoformat(),
# "file_type": "image"
# })
#
# # 2. 插入每张人脸
# face_vecs = info.get("face_vecs")
# face_count = info.get("face_count", 0)
#
# if face_count > 0 and face_vecs and len(face_vecs) == face_count:
# for idx, face_vec in enumerate(face_vecs):
# face_chunks.append({
# "userid": orgid,
# "knowledge_base_id": fiid,
# "text": f"[Face {idx + 1}/{face_count} in {img_path}]",
# "vector": face_vec,
# "document_id": document_id,
# "filename": os.path.basename(realpath),
# "file_path": realpath,
# "upload_time": datetime.now().isoformat(),
# "file_type": "face",
# })
#
# if image_chunks:
# for i in range(0, len(image_chunks), 10):
# await self.api_service.milvus_insert_document(
# request=request,
# chunks=image_chunks[i:i + 10],
# upappid=service_params['vdb'],
# apiname="milvus/insertdocument",
# user=userid,
# db_type=db_type
# )
#
# if face_chunks:
# for i in range(0, len(face_chunks), 10):
# await self.api_service.milvus_insert_document(
# request=request,
# chunks=face_chunks[i:i + 10],
# upappid=service_params['vdb'],
# apiname="milvus/insertdocument",
# user=userid,
# db_type=db_type
# )
# timings["insert_images"] = time.time() - start
# image_count = len(image_chunks)
# face_count = len(face_chunks)
#
# debug(f"多模态插入完成: 图像 {image_count} 条, 人脸 {face_count} 条")
#
# if transaction_mgr and (image_count + face_count > 0):
# transaction_mgr.add_operation(
# OperationType.IMAGE_VECTORS_INSERT,
# {"images": image_count, "faces": face_count, "document_id": document_id}
# )
#
# # 记录事务操作,包含回滚函数
# if transaction_mgr:
# async def rollback_multimodal(data, context):
# try:
# # 防御性检查
# required_context = ['request', 'service_params', 'userid']
# missing_context = [k for k in required_context if k not in context or context[k] is None]
# if missing_context:
# raise ValueError(f"回滚上下文缺少字段: {', '.join(missing_context)}")
#
# required_data = ['orgid', 'realpath', 'fiid', 'id', 'db_type']
# missing_data = [k for k in required_data if k not in data or data[k] is None]
# if missing_data:
# raise ValueError(f"多模态回滚数据缺少字段: {', '.join(missing_data)}")
#
# await self.delete_from_vector_db(
# context['request'], data['orgid'], data['realpath'],
# data['fiid'], data['id'], context['service_params'],
# context['userid'], data['db_type']
# )
# return f"已回滚多模态向量: {data['id']}"
# except Exception as e:
# error(f"多模态回滚向量数据库失败: document_id={data.get('id', '未知')}, 错误: {str(e)}")
# raise
#
# transaction_mgr.add_operation(
# OperationType.VDB_INSERT,
# {
# 'orgid': orgid, 'realpath': realpath, 'fiid': fiid,
# 'id': id, 'db_type': db_type
# },
# rollback_func=rollback_multimodal
# )
#
# return image_count, face_count
async def insert_to_vector_text(self, request,
db_type: str, fields: Dict, service_params: Dict, userid: str, timings: Dict) -> List[Dict]:

View File

@ -57,11 +57,12 @@ async def sor_get_service_params(sor, orgid):
service_params['reranker'] = service['upappid']
elif name == 'mrebel三元组抽取':
service_params['triples'] = service['upappid']
elif name == 'neo4j删除知识库':
elif name == 'neo4j知识库':
service_params['gdb'] = service['upappid']
elif name == 'small实体抽取':
service_params['entities'] = service['upappid']
elif name == 'clip多模态嵌入服务':
service_params['embedding'] = service['upappid']
# 检查是否所有服务参数都已填充
missing_services = [k for k, v in service_params.items() if v is None]
if missing_services:
@ -76,3 +77,25 @@ async def get_service_params(orgid):
async with db.sqlorContext(dbname) as sor:
return await sor_get_service_params(sor, orgid)
return None
async def sor_get_embedding_mode(sor, orgid) -> int:
"""根据 orgid 获取嵌入模式0=纯文本1=多模态"""
sql = """
SELECT em.mode
FROM service_opts so
JOIN embedding_mode em ON so.embedding_id = em.embeddingid
WHERE so.orgid = ${orgid}$
"""
rows = await sor.sqlExe(sql, {"orgid": orgid})
if not rows:
debug(f"orgid={orgid} 未配置 embedding_mode默认为 0纯文本")
return 0
return int(rows[0].mode)
async def get_embedding_mode(orgid):
db = DBPools()
debug(f"传入的orgid是{orgid}")
dbname = get_serverenv('get_module_dbname')('rag')
async with db.sqlorContext(dbname) as sor:
return await sor_get_embedding_mode(sor, orgid)
return None

View File

@ -45,6 +45,43 @@ class APIService:
error(f"request #{request_id} 嵌入服务调用失败: {str(e)}, upappid={upappid}, apiname={apiname}")
raise RuntimeError(f"嵌入服务调用失败: {str(e)}")
#多模态嵌入服务
async def get_multi_embeddings(
self,
request,
inputs: List[Dict],
upappid: str,
apiname: str,
user: str
) -> Dict[str, Dict]:
"""
多模态统一嵌入支持文本图片音频视频
返回原始输入字符串为 key 的完整结果 type / vector / 人脸信息
"""
request_id = str(uuid.uuid4())
debug(f"Request #{request_id} 多模态嵌入开始,共{len(inputs)}")
if not inputs or not isinstance(inputs, list):
raise ValueError("inputs 必须为非空列表")
try:
uapi = UAPI(request, DictObject(**globals()))
params_kw = {"inputs": inputs}
b = await uapi.call(upappid, apiname, user, params_kw)
d = await self.handle_uapi_response(b, upappid, apiname, "多模态嵌入服务", request_id)
if d.get("object") != "embedding.result" or "data" not in d:
error(f"request #{request_id} 返回格式错误: {d}")
raise RuntimeError("多模态嵌入返回格式错误")
result = d["data"] # 直接返回 {input_str: {type, vector, ...}}
debug(f"request #{request_id} 成功获取 {len(result)} 条多模态向量")
return result
except Exception as e:
error(f"request #{request_id} 多模态嵌入失败: {str(e)}")
raise RuntimeError(f"多模态嵌入失败: {str(e)}")
# 实体提取服务 (LTP/small)
async def extract_entities(self, request, query: str, upappid: str, apiname: str, user: str) -> list:
"""调用实体识别服务"""