This commit is contained in:
wangmeihua 2025-08-27 14:09:39 +08:00
parent 8c134b7ca5
commit 2435b8dca0
4 changed files with 182 additions and 62 deletions

View File

@ -113,7 +113,7 @@ class APIService:
error(f"Request #{request_id} failed, status: {response.status}, response: {error_text}")
raise RuntimeError(f"三元组抽取服务调用失败: {response.status}, {error_text}")
result = await response.json()
if result.get("object") != "list" or not result.get("data"):
if result.get("object") != "list":
error(f"Request #{request_id} invalid response format: {result}")
raise RuntimeError("三元组抽取服务响应格式错误")
triples = result["data"]
@ -231,6 +231,13 @@ class APIService:
"chunks": chunks,
"dbtype": db_type
}
# 计算请求体大小
payload = json.dumps(params) # 转换为 JSON 字符串
payload_bytes = payload.encode() # 编码为字节
payload_size = len(payload_bytes) # 获取字节数
debug(f"Request payload size for insertdocument: {payload_size} bytes")
return await self._make_request("https://vectordb.opencomputing.net:10443/v1/insertdocument", "insertdocument", params)
async def milvus_delete_document(self, userid: str, file_path: str, knowledge_base_id: str, document_id:str, db_type: str = "") -> Dict[str, Any]:

View File

@ -1,4 +1,4 @@
from api_service import APIService
from rag.api_service import APIService
from appPublic.registerfunction import RegisterFunction
from appPublic.log import debug, error, info
from sqlor.dbpools import DBPools
@ -14,6 +14,9 @@ from datetime import datetime
import traceback
from filetxt.loader import fileloader
from ahserver.serverenv import get_serverenv
from typing import List, Dict, Any
api_service = APIService()
async def get_orgid_by_id(kdb_id):
"""
@ -38,7 +41,6 @@ async def get_orgid_by_id(kdb_id):
async def file_uploaded(params_kw):
"""将文档插入 Milvus 并抽取三元组到 Neo4j"""
debug(f'Received params: {params_kw=}')
api_service = APIService()
realpath = params_kw.get('realpath', '')
fiid = params_kw.get('fiid', '')
id = params_kw.get('id', '')
@ -52,6 +54,7 @@ async def file_uploaded(params_kw):
try:
if not orgid or not fiid or not id:
raise ValueError("orgid、fiid 和 id 不能为空")
debug(f'orgid、fiid 和 id 不能为空')
if len(orgid) > 32 or len(fiid) > 255:
raise ValueError("orgid 或 fiid 的长度超出限制")
if not os.path.exists(realpath):
@ -90,7 +93,11 @@ async def file_uploaded(params_kw):
debug("调用嵌入服务生成向量")
start_embedding = time.time()
texts = [chunk.page_content for chunk in chunks]
embeddings = await api_service.get_embeddings(texts)
embeddings = []
for i in range(0, len(texts), 10): # 每次处理 10 个文本块
batch_texts = texts[i:i + 10]
batch_embeddings = await api_service.get_embeddings(batch_texts)
embeddings.extend(batch_embeddings)
if not embeddings or not all(len(vec) == 1024 for vec in embeddings):
raise ValueError("所有嵌入向量必须是长度为 1024 的浮点数列表")
timings["generate_embeddings"] = time.time() - start_embedding
@ -112,7 +119,11 @@ async def file_uploaded(params_kw):
debug(f"调用插入文件端点: {realpath}")
start_milvus = time.time()
result = await api_service.milvus_insert_document(chunks_data, db_type)
for i in range(0, len(chunks_data), 10): # 每次处理 10 条数据
batch_chunks = chunks_data[i:i + 10]
result = await api_service.milvus_insert_document(batch_chunks, db_type)
if result.get("status") != "success":
raise ValueError(result.get("message", "Milvus 插入失败"))
timings["insert_milvus"] = time.time() - start_milvus
debug(f"Milvus 插入耗时: {timings['insert_milvus']:.2f}")
@ -158,8 +169,9 @@ async def file_uploaded(params_kw):
debug(f"抽取到 {len(unique_triples)} 个三元组,调用 Neo4j 服务插入")
start_neo4j = time.time()
if unique_triples:
neo4j_result = await api_service.neo4j_insert_triples(unique_triples, id, fiid, orgid)
for i in range(0, len(unique_triples), 30): # 每次插入 30 个三元组
batch_triples = unique_triples[i:i + 30]
neo4j_result = await api_service.neo4j_insert_triples(batch_triples, id, fiid, orgid)
debug(f"Neo4j 服务响应: {neo4j_result}")
if neo4j_result.get("status") != "success":
timings["insert_neo4j"] = time.time() - start_neo4j
@ -194,7 +206,6 @@ async def file_uploaded(params_kw):
async def file_deleted(params_kw):
"""删除用户指定文件数据,包括 Milvus 和 Neo4j 中的记录"""
api_service = APIService()
id = params_kw.get('id', '')
realpath = params_kw.get('realpath', '')
fiid = params_kw.get('fiid', '')
@ -246,6 +257,72 @@ async def file_deleted(params_kw):
"status_code": 400
}
async def _search_query(query: str, userid: str, knowledge_base_ids: List[str], limit: int = 5,
offset: int = 0, use_rerank: bool = True, db_type: str = "") -> Dict[str, Any]:
"""纯向量搜索,调用服务化端点"""
start_time = time.time()
collection_name = "ragdb" if not db_type else f"ragdb_{db_type}"
timing_stats = {}
try:
info(
f"开始纯向量搜索: query={query}, userid={userid}, db_type={db_type}, knowledge_base_ids={knowledge_base_ids}, limit={limit}, offset={offset}, use_rerank={use_rerank}")
if not query:
raise ValueError("查询文本不能为空")
if not userid:
raise ValueError("userid 不能为空")
if limit <= 0 or limit > 16384:
raise ValueError("limit 必须在 1 到 16384 之间")
if offset < 0:
raise ValueError("offset 不能为负数")
if limit + offset > 16384:
raise ValueError("limit + offset 不能超过 16384")
if not knowledge_base_ids:
raise ValueError("knowledge_base_ids 不能为空")
for kb_id in knowledge_base_ids:
if not isinstance(kb_id, str):
raise ValueError(f"knowledge_base_id 必须是字符串: {kb_id}")
if len(kb_id) > 100:
raise ValueError(f"knowledge_base_id 长度超出 100 个字符: {kb_id}")
# 将查询文本转换为向量
vector_start = time.time()
query_vector = await api_service.get_embeddings([query])
if not query_vector or not all(len(vec) == 1024 for vec in query_vector):
raise ValueError("查询向量必须是长度为 1024 的浮点数列表")
query_vector = query_vector[0] # 取第一个向量
timing_stats["vector_generation"] = time.time() - vector_start
debug(f"生成查询向量耗时: {timing_stats['vector_generation']:.3f}")
# 调用纯向量搜索端点
search_start = time.time()
result = await api_service.milvus_search_query(query_vector, userid, knowledge_base_ids, limit, offset)
timing_stats["vector_search"] = time.time() - search_start
debug(f"向量搜索耗时: {timing_stats['vector_search']:.3f}")
if result.get("status") != "success":
error(f"纯向量搜索失败: {result.get('message', '未知错误')}")
return {"results": [], "timing": timing_stats}
unique_results = result.get("results", [])
if use_rerank and unique_results:
rerank_start = time.time()
debug("开始重排序")
unique_results = await api_service.rerank_results(query, unique_results, limit)
unique_results = sorted(unique_results, key=lambda x: x.get('rerank_score', 0), reverse=True)
timing_stats["reranking"] = time.time() - rerank_start
debug(f"重排序耗时: {timing_stats['reranking']:.3f}")
debug(f"重排序分数分布: {[round(r.get('rerank_score', 0), 3) for r in unique_results]}")
else:
unique_results = [{k: v for k, v in r.items() if k != 'rerank_score'} for r in unique_results]
timing_stats["total_time"] = time.time() - start_time
info(f"纯向量搜索完成,返回 {len(unique_results)} 条结果,总耗时: {timing_stats['total_time']:.3f}")
return {"results": unique_results[:limit], "timing": timing_stats}
except Exception as e:
error(f"纯向量搜索失败: {str(e)}, 堆栈: {traceback.format_exc()}")
return {"results": [], "timing": timing_stats}
async def main():
dbs = {
@ -286,6 +363,18 @@ async def main():
# delete_result = await file_deleted(test_params_delete)
# print(f"file_deleted 结果: {delete_result}")
# # 测试 _search_query
# print("测试 _search_query...")
# test_params_query = {
# "query": "什么是关系抽取",
# "userid": "04J6VbxLqB_9RPMcgOv_8",
# "knowledge_base_ids": ["1"],
# "limit": 5,
# "offset": 0,
# "use_rerank": True
# }
# query_result = await _search_query(query="什么是知识融合?", userid="testuser1", knowledge_base_ids=["kb1", "kb2"], limit=5, offset=0, use_rerank=True, db_type="")
# print(f"file_uploaded 结果: {query_result}")
if __name__ == "__main__":
asyncio.run(main())

View File

@ -184,6 +184,7 @@ where a.orgid = b.orgid
debug(f"加载文件: {realpath}")
start_load = time.time()
text = fileloader(realpath)
# debug(f"处理后的文件内容是:{text=}")
text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s.;,\n]', '', text)
timings["load_file"] = time.time() - start_load
debug(f"加载文件耗时: {timings['load_file']:.2f} 秒, 文本长度: {len(text)}")
@ -249,7 +250,7 @@ where a.orgid = b.orgid
chunks=batch_chunks,
db_type=db_type,
upappid=service_params['vdb'],
apiname="milvus/insertdocument", # 固定 apiname
apiname="milvus/insertdocument",
user=userid
)
if result.get("status") != "success":
@ -264,6 +265,7 @@ where a.orgid = b.orgid
debug("调用三元组抽取服务")
start_triples = time.time()
unique_triples = []
try:
chunk_texts = [doc.page_content for doc in chunks]
debug(f"处理 {len(chunk_texts)} 个分片进行三元组抽取")
@ -272,7 +274,7 @@ where a.orgid = b.orgid
request=request,
text=chunk,
upappid=service_params['triples'],
apiname="Babelscape/mrebel-large", # 固定 apiname
apiname="Babelscape/mrebel-large",
user=userid
) for chunk in chunk_texts
]
@ -285,7 +287,6 @@ where a.orgid = b.orgid
else:
error(f"分片 {i + 1} 处理失败: {str(result)}")
unique_triples = []
seen = set()
for t in triples:
identifier = (t['head'].lower(), t['tail'].lower(), t['type'].lower())
@ -306,6 +307,7 @@ where a.orgid = b.orgid
debug(
f"三元组抽取耗时: {timings['extract_triples']:.2f} 秒, 抽取到 {len(unique_triples)} 个三元组: {unique_triples[:5]}")
if unique_triples:
debug(f"抽取到 {len(unique_triples)} 个三元组,调用 Neo4j 服务插入")
start_neo4j = time.time()
for i in range(0, len(unique_triples), 30): # 每次插入 30 个三元组
@ -317,47 +319,69 @@ where a.orgid = b.orgid
knowledge_base_id=fiid,
userid=orgid,
upappid=service_params['gdb'],
apiname="neo4j/inserttriples", # 固定 apiname
apiname="neo4j/inserttriples",
user=userid
)
debug(f"Neo4j 服务响应: {neo4j_result}")
if neo4j_result.get("status") != "success":
timings["insert_neo4j"] = time.time() - start_neo4j
timings["total"] = time.time() - start_total
return {"status": "error", "document_id": id, "collection_name": "ragdb",
return {
"status": "error",
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"message": f"Neo4j 三元组插入失败: {neo4j_result.get('message', '未知错误')}",
"status_code": 400}
"status_code": 400
}
info(f"文件 {realpath} 三元组成功插入 Neo4j: {neo4j_result.get('message')}")
else:
debug(f"文件 {realpath} 未抽取到三元组")
timings["insert_neo4j"] = time.time() - start_neo4j
debug(f"Neo4j 插入耗时: {timings['insert_neo4j']:.2f}")
else:
debug(f"文件 {realpath} 未抽取到三元组")
timings["insert_neo4j"] = 0.0
except Exception as e:
timings["extract_triples"] = time.time() - start_triples if "extract_triples" not in timings else \
timings[
"extract_triples"]
timings["insert_neo4j"] = time.time() - start_neo4j
timings["extract_triples"]
timings["insert_neo4j"] = time.time() - start_neo4j if "insert_neo4j" not in timings else timings[
"insert_neo4j"]
debug(f"处理三元组或 Neo4j 插入失败: {str(e)}, 堆栈: {traceback.format_exc()}")
timings["total"] = time.time() - start_total
return {"status": "success", "document_id": id, "collection_name": "ragdb", "timings": timings,
return {
"status": "success",
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"unique_triples": unique_triples,
"message": f"文件 {realpath} 成功嵌入,但三元组处理或 Neo4j 插入失败: {str(e)}",
"status_code": 200}
"status_code": 200
}
timings["total"] = time.time() - start_total
debug(f"总耗时: {timings['total']:.2f}")
return {"status": "success", "userid": orgid, "document_id": id, "collection_name": "ragdb",
return {
"status": "success",
"userid": orgid,
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"unique_triples": unique_triples, "message": f"文件 {realpath} 成功嵌入并处理三元组",
"status_code": 200}
"unique_triples": unique_triples,
"message": f"文件 {realpath} 成功嵌入并处理三元组",
"status_code": 200
}
except Exception as e:
error(f"插入文档失败: {str(e)}, 堆栈: {traceback.format_exc()}")
timings["total"] = time.time() - start_total
return {"status": "error", "document_id": id, "collection_name": "ragdb", "timings": timings,
"message": f"插入文档失败: {str(e)}", "status_code": 400}
return {
"status": "error",
"document_id": id,
"collection_name": "ragdb",
"timings": timings,
"message": f"插入文档失败: {str(e)}",
"status_code": 400
}
async def file_deleted(self, request, recs, userid):
"""删除用户指定文件数据,包括 Milvus 和 Neo4j 中的记录"""

View File

@ -25,7 +25,7 @@
}
},
{
"widgettype":"text",
"widgettype":"Text",
"options":{
"otext":"{{p.description}}",
"i18n":true,
@ -37,18 +37,18 @@
{
"widgettype":"HBox",
"options":{
"height":1.5
"cheight":1.5
},
"subwidgets":[
{
"widgettype":"text",
"widgettype":"Text",
"options":{
"otext":"可用磁盘容量",
"i18n":true
}
},
{
"widgettype":"text",
"widgettype":"Text",
"options":{
"text":"{{p.quota / 1000000}}M"
}
@ -58,18 +58,18 @@
{
"widgettype":"HBox",
"options":{
"height":1.5
"cheight":1.5
},
"subwidgets":[
{
"widgettype":"text",
"widgettype":"Text",
"options":{
"otext":"时长(月)",
"i18n":true
}
},
{
"widgettype":"text",
"widgettype":"Text",
"options":{
"text":"{{p.term}}"
}
@ -79,18 +79,18 @@
{
"widgettype":"HBox",
"options":{
"height":1.5
"cheight":1.5
},
"subwidgets":[
{
"widgettype":"text",
"widgettype":"Text",
"options":{
"otext":"价格",
"i18n":true
}
},
{
"widgettype":"text",
"widgettype":"Text",
"options":{
"color":"red",
"text":"{{p.price}}圆"
@ -112,7 +112,7 @@
},
"options":{
"params":{
"selected_program":"p.id"
"selected_program":"{{p.id}}"
},
"url":"{{entire_url('./program_selected.dspy')}}"
}