添加neo4j服务,修改rag服务调用neo4j

This commit is contained in:
wangmeihua 2025-07-29 17:57:58 +08:00
parent 143164c53d
commit 1e43b3aaec
11 changed files with 978 additions and 114 deletions

560
llmengine/db_neo4j.py Normal file
View File

@ -0,0 +1,560 @@
from typing import Dict, List, Any, Set, Tuple
from appPublic.jsonConfig import getConfig
from appPublic.log import debug, error, info
from py2neo import Graph, Node, Relationship
import re
from llmengine.base_db import BaseDBConnection, connection_register
from threading import Lock
from scipy.spatial.distance import cosine
import numpy as np
import aiohttp
import asyncio
import time
# 嵌入缓存
EMBED_CACHE = {}
class Neo4jConnection(BaseDBConnection):
_instance = None
_lock = Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super(Neo4jConnection, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
try:
config = getConfig()
self.neo4j_uri = config['neo4j']['uri']
self.neo4j_user = config['neo4j']['user']
self.neo4j_password = config['neo4j']['password']
self.g = Graph(self.neo4j_uri, auth=(self.neo4j_user, self.neo4j_password))
info("Neo4jConnection initialized")
self._initialized = True
except KeyError as e:
error(f"配置文件缺少必要字段: {str(e)}")
self._initialized = False
raise RuntimeError(f"配置文件缺少必要字段: {str(e)}")
except Exception as e:
error(f"Neo4jConnection 初始化失败: {str(e)}")
self._initialized = False
raise RuntimeError(f"Neo4jConnection 初始化失败: {str(e)}")
def _normalize_label(self, entity_type: str) -> str:
"""规范化实体类型为 Neo4j 标签"""
if not entity_type or not entity_type.strip():
return 'Entity'
entity_type = re.sub(r'[^\w\s]', '', entity_type.strip())
words = entity_type.split()
label = '_'.join(word.capitalize() for word in words if word)
return label or 'Entity'
def _clean_relation(self, relation: str) -> Tuple[str, str]:
"""清洗关系,返回 (rel_type, rel_name),确保 rel_type 合法"""
relation = relation.strip()
if not relation:
return 'RELATED_TO', '相关'
cleaned_relation = re.sub(r'[^\w\s]', '', relation).strip()
if not cleaned_relation:
return 'RELATED_TO', '相关'
if 'instance of' in relation.lower():
return 'INSTANCE_OF', '实例'
elif 'subclass of' in relation.lower():
return 'SUBCLASS_OF', '子类'
elif 'part of' in relation.lower():
return 'PART_OF', '部分'
rel_type = re.sub(r'\s+', '_', cleaned_relation).upper()
if rel_type and rel_type[0].isdigit():
rel_type = f'REL_{rel_type}'
if not re.match(r'^[A-Za-z][A-Za-z0-9_]*$', rel_type):
debug(f"非法关系类型 '{rel_type}',替换为 'RELATED_TO'")
return 'RELATED_TO', relation
return rel_type, relation
def _read_nodes(self, triples: List[Dict]) -> Tuple[Dict[str, Set], Dict[str, List], List[Dict]]:
"""从三元组列表中读取节点和关系"""
nodes_by_label = {}
relations_by_type = {}
valid_triples = []
try:
for triple in triples:
if not all(key in triple for key in ['head', 'head_type', 'type', 'tail', 'tail_type']):
debug(f"无效三元组: {triple}")
continue
head, relation, tail, head_type, tail_type = (
triple['head'], triple['type'], triple['tail'], triple['head_type'], triple['tail_type']
)
head_label = self._normalize_label(head_type)
tail_label = self._normalize_label(tail_type)
debug(f"实体类型: {head_type} -> {head_label}, {tail_type} -> {tail_label}")
if head_label not in nodes_by_label:
nodes_by_label[head_label] = set()
if tail_label not in nodes_by_label:
nodes_by_label[tail_label] = set()
nodes_by_label[head_label].add(head)
nodes_by_label[tail_label].add(tail)
rel_type, rel_name = self._clean_relation(relation)
if rel_type not in relations_by_type:
relations_by_type[rel_type] = []
relations_by_type[rel_type].append({
'head': head,
'tail': tail,
'head_label': head_label,
'tail_label': tail_label,
'rel_name': rel_name
})
valid_triples.append({
'head': head,
'relation': relation,
'tail': tail,
'head_type': head_type,
'tail_type': tail_type
})
info(f"读取节点: {sum(len(nodes) for nodes in nodes_by_label.values())}")
info(f"读取关系: {sum(len(rels) for rels in relations_by_type.values())}")
return nodes_by_label, relations_by_type, valid_triples
except Exception as e:
error(f"读取三元组失败: {str(e)}")
raise RuntimeError(f"读取三元组失败: {str(e)}")
def _create_node(self, label: str, nodes: Set[str], document_id: str, knowledge_base_id: str, userid: str) -> int:
"""创建节点,包含 document_id、knowledge_base_id 和 userid 属性"""
count = 0
for node_name in nodes:
query = (
f"MATCH (n:{label} {{name: $name, document_id: $doc_id, "
f"knowledge_base_id: $kb_id, userid: $userid}}) RETURN n"
)
try:
if self.g.run(query, name=node_name, doc_id=document_id,
kb_id=knowledge_base_id, userid=userid).data():
continue
node = Node(
label,
name=node_name,
document_id=document_id,
knowledge_base_id=knowledge_base_id,
userid=userid
)
self.g.create(node)
count += 1
debug(f"创建节点: {label} - {node_name} (document_id: {document_id}, "
f"knowledge_base_id: {knowledge_base_id}, userid: {userid})")
except Exception as e:
error(f"创建节点失败: {label} - {node_name}, 错误: {str(e)}")
info(f"创建 {label} 节点: {count}/{len(nodes)}")
return count
def _create_relationship(self, rel_type: str, relations: List[Dict], document_id: str, knowledge_base_id: str, userid: str) -> int:
"""创建关系,包含 document_id、knowledge_base_id 和 userid 属性"""
count = 0
total = len(relations)
seen_edges = set()
for rel in relations:
head, tail, head_label, tail_label, rel_name = (
rel['head'], rel['tail'], rel['head_label'], rel['tail_label'], rel['rel_name']
)
edge_key = f"{head_label}:{head}###{tail_label}:{tail}###{rel_type}"
if edge_key in seen_edges:
continue
seen_edges.add(edge_key)
query = (
f"MATCH (p:{head_label} {{name: $head, document_id: $doc_id, "
f"knowledge_base_id: $kb_id, userid: $userid}}), "
f"(q:{tail_label} {{name: $tail, document_id: $doc_id, "
f"knowledge_base_id: $kb_id, userid: $userid}}) "
f"CREATE (p)-[r:{rel_type} {{name: $rel_name, document_id: $doc_id, "
f"knowledge_base_id: $kb_id, userid: $userid}}]->(q)"
)
try:
self.g.run(query, head=head, tail=tail, rel_name=rel_name,
doc_id=document_id, kb_id=knowledge_base_id,
userid=userid)
count += 1
debug(f"创建关系: {head} -[{rel_type}]-> {tail} (document_id: {document_id}, "
f"knowledge_base_id: {knowledge_base_id}, userid: {userid})")
except Exception as e:
error(f"创建关系失败: {query}, 错误: {str(e)}")
info(f"创建 {rel_type} 关系: {count}/{total}")
return count
async def _get_embeddings(self, texts: List[str]) -> List[List[float]]:
"""调用嵌入服务获取文本的向量,带缓存"""
try:
uncached_texts = [text for text in texts if text not in EMBED_CACHE]
if uncached_texts:
async with aiohttp.ClientSession() as session:
async with session.post(
"http://localhost:9998/v1/embeddings",
headers={"Content-Type": "application/json"},
json={"input": uncached_texts}
) as response:
if response.status != 200:
error(f"嵌入服务调用失败,状态码: {response.status}")
raise RuntimeError(f"嵌入服务调用失败: {response.status}")
result = await response.json()
if result.get("object") != "list" or not result.get("data"):
error(f"嵌入服务响应格式错误: {result}")
raise RuntimeError("嵌入服务响应格式错误")
embeddings = [item["embedding"] for item in result["data"]]
for text, embedding in zip(uncached_texts, embeddings):
EMBED_CACHE[text] = np.array(embedding) / np.linalg.norm(embedding)
debug(f"成功获取 {len(embeddings)} 个新嵌入向量,缓存大小: {len(EMBED_CACHE)}")
return [EMBED_CACHE[text] for text in texts]
except Exception as e:
error(f"嵌入服务调用失败: {str(e)}")
raise RuntimeError(f"嵌入服务调用失败: {str(e)}")
async def handle_connection(self, action: str, params: Dict = None) -> Dict:
"""处理 Neo4j 数据库操作"""
if not params:
params = {}
try:
debug(f"处理 Neo4j 操作: action={action}, params={params}")
collection_name = "neo4j" # 为了与 MilvusConnection 的返回格式一致
document_id = params.get("document_id", "")
if not self._initialized:
error("Neo4j 服务未启动")
return {
"status": "error",
"message": "Neo4j 服务未启动",
"collection_name": collection_name,
"document_id": document_id,
"status_code": 400
}
if action == "initialize":
return {
"status": "success",
"message": "Neo4j 服务已初始化",
"collection_name": collection_name,
"document_id": document_id,
"status_code": 200
}
elif action == "insert_triples":
triples = params.get("triples", [])
document_id = params.get("document_id", "")
knowledge_base_id = params.get("knowledge_base_id", "")
userid = params.get("userid", "")
if not triples or not document_id or not knowledge_base_id or not userid:
return {
"status": "error",
"message": "triples、document_id、knowledge_base_id 和 userid 不能为空",
"collection_name": collection_name,
"document_id": document_id,
"status_code": 400
}
return self._insert_triples(triples, document_id, knowledge_base_id, userid)
elif action == "delete_document":
document_id = params.get("document_id", "")
if not document_id:
return {
"status": "error",
"message": "document_id 不能为空",
"collection_name": collection_name,
"document_id": document_id,
"status_code": 400
}
return self._delete_document(document_id)
elif action == "delete_knowledge_base":
userid = params.get("userid", "")
knowledge_base_id = params.get("knowledge_base_id", "")
if not userid or not knowledge_base_id:
return {
"status": "error",
"message": "userid 和 knowledge_base_id 不能为空",
"collection_name": collection_name,
"document_id": document_id,
"status_code": 400
}
return self._delete_knowledge_base(userid, knowledge_base_id)
elif action == "match_triplets":
query = params.get("query", "")
query_entities = params.get("query_entities", [])
userid = params.get("userid", "")
knowledge_base_id = params.get("knowledge_base_id", "")
if not query or not query_entities or not userid or not knowledge_base_id:
return {
"status": "error",
"message": "query、query_entities、userid 和 knowledge_base_id 不能为空",
"collection_name": collection_name,
"document_id": document_id,
"status_code": 400
}
return await self._match_triplets(query, query_entities, userid, knowledge_base_id)
else:
return {
"status": "error",
"message": f"未知的 action: {action}",
"collection_name": collection_name,
"document_id": document_id,
"status_code": 400
}
except Exception as e:
error(f"处理 Neo4j 操作失败: action={action}, 错误: {str(e)}")
return {
"status": "error",
"message": f"服务器错误: {str(e)}",
"collection_name": collection_name,
"document_id": document_id,
"status_code": 400
}
def _insert_triples(self, triples: List[Dict], document_id: str, knowledge_base_id: str, userid: str) -> Dict:
"""插入三元组到 Neo4j"""
try:
if not triples:
return {
"status": "success",
"message": "没有三元组需要插入",
"nodes_created": 0,
"rels_created": 0,
"collection_name": "neo4j",
"document_id": document_id,
"status_code": 200
}
nodes_by_label, relations_by_type, _ = self._read_nodes(triples)
total_nodes = 0
for label, nodes in nodes_by_label.items():
total_nodes += self._create_node(label, nodes, document_id, knowledge_base_id, userid)
total_rels = 0
for rel_type, relations in relations_by_type.items():
total_rels += self._create_relationship(rel_type, relations, document_id, knowledge_base_id, userid)
info(f"成功插入 {total_nodes} 个节点和 {total_rels} 个关系")
return {
"status": "success",
"message": f"成功插入 {total_nodes} 个节点和 {total_rels} 个关系",
"nodes_created": total_nodes,
"rels_created": total_rels,
"collection_name": "neo4j",
"document_id": document_id,
"status_code": 200
}
except Exception as e:
error(f"插入三元组失败: {str(e)}")
return {
"status": "error",
"message": f"插入三元组失败: {str(e)}",
"collection_name": "neo4j",
"document_id": document_id,
"status_code": 400
}
def _delete_document(self, document_id: str) -> Dict:
"""删除 Neo4j 中指定文档的数据"""
try:
query = """
MATCH (n {document_id: $document_id})
OPTIONAL MATCH (n)-[r {document_id: $document_id}]->()
WITH collect(r) AS rels, collect(n) AS nodes
FOREACH (r IN rels | DELETE r)
FOREACH (n IN nodes | DELETE n)
RETURN size(nodes) AS node_count, size(rels) AS rel_count, [r IN rels | type(r)] AS rel_types
"""
result = self.g.run(query, document_id=document_id).data()
nodes_deleted = result[0]['node_count'] if result else 0
rels_deleted = result[0]['rel_count'] if result else 0
rel_types = result[0]['rel_types'] if result else []
info(f"成功删除 document_id={document_id}{nodes_deleted} 个节点和 {rels_deleted} 个关系,关系类型: {rel_types}")
return {
"status": "success",
"message": f"成功删除 {nodes_deleted} 个节点和 {rels_deleted} 个关系",
"nodes_deleted": nodes_deleted,
"rels_deleted": rels_deleted,
"collection_name": "neo4j",
"document_id": document_id,
"status_code": 200
}
except Exception as e:
error(f"删除 document_id={document_id} 的 Neo4j 数据失败: {str(e)}")
return {
"status": "error",
"message": f"删除 Neo4j 数据失败: {str(e)}",
"collection_name": "neo4j",
"document_id": document_id,
"status_code": 400
}
def _delete_knowledge_base(self, userid: str, knowledge_base_id: str) -> Dict:
"""删除 Neo4j 中指定用户和知识库的数据"""
try:
query = """
MATCH (n {userid: $userid, knowledge_base_id: $knowledge_base_id})
OPTIONAL MATCH (n)-[r {userid: $userid, knowledge_base_id: $knowledge_base_id}]->()
WITH collect(r) AS rels, collect(n) AS nodes
FOREACH (r IN rels | DELETE r)
FOREACH (n IN nodes | DELETE n)
RETURN size(nodes) AS node_count, size(rels) AS rel_count, [r IN rels | type(r)] AS rel_types
"""
result = self.g.run(query, userid=userid, knowledge_base_id=knowledge_base_id).data()
nodes_deleted = result[0]['node_count'] if result else 0
rels_deleted = result[0]['rel_count'] if result else 0
rel_types = result[0]['rel_types'] if result else []
info(f"成功删除 userid={userid}, knowledge_base_id={knowledge_base_id}{nodes_deleted} 个节点和 {rels_deleted} 个关系")
return {
"status": "success",
"message": f"成功删除 {nodes_deleted} 个节点和 {rels_deleted} 个关系",
"nodes_deleted": nodes_deleted,
"rels_deleted": rels_deleted,
"collection_name": "neo4j",
"document_id": "",
"status_code": 200
}
except Exception as e:
error(f"删除 Neo4j 数据失败: {str(e)}")
return {
"status": "error",
"message": f"删除 Neo4j 数据失败: {str(e)}",
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}
async def _match_triplets(self, query: str, query_entities: List[str], userid: str, knowledge_base_id: str) -> Dict:
"""匹配查询实体与 Neo4j 中的三元组"""
start_time = time.time()
timing_stats = {}
matched_triplets = []
ENTITY_SIMILARITY_THRESHOLD = 0.8
try:
debug(f"已连接到 Neo4j: {self.neo4j_uri}")
timing_stats["neo4j_connect"] = time.time() - start_time
matched_names = set()
entity_match_start = time.time()
for entity in query_entities:
normalized_entity = entity.lower().strip()
query = """
MATCH (n {userid: $userid, knowledge_base_id: $knowledge_base_id})
WHERE toLower(n.name) CONTAINS $entity
OR apoc.text.levenshteinSimilarity(toLower(n.name), $entity) > 0.7
RETURN n.name, apoc.text.levenshteinSimilarity(toLower(n.name), $entity) AS sim
ORDER BY sim DESC
LIMIT 100
"""
try:
results = self.g.run(query, userid=userid, knowledge_base_id=knowledge_base_id, entity=normalized_entity).data()
for record in results:
matched_names.add(record['n.name'])
debug(f"实体 {entity} 匹配节点: {record['n.name']} (Levenshtein 相似度: {record['sim']:.2f})")
except Exception as e:
debug(f"模糊匹配实体 {entity} 失败: {str(e)}")
continue
timing_stats["entity_match"] = time.time() - entity_match_start
debug(f"实体匹配耗时: {timing_stats['entity_match']:.3f}")
triplets = []
if matched_names:
triplet_query_start = time.time()
query = """
MATCH (h {userid: $userid, knowledge_base_id: $knowledge_base_id})-[r {userid: $userid, knowledge_base_id: $knowledge_base_id}]->(t {userid: $userid, knowledge_base_id: $knowledge_base_id})
WHERE h.name IN $matched_names OR t.name IN $matched_names
RETURN h.name AS head, r.name AS type, t.name AS tail
LIMIT 100
"""
try:
results = self.g.run(query, userid=userid, knowledge_base_id=knowledge_base_id, matched_names=list(matched_names)).data()
seen = set()
for record in results:
head, type_, tail = record['head'], record['type'], record['tail']
triplet_key = (head.lower(), type_.lower(), tail.lower())
if triplet_key not in seen:
seen.add(triplet_key)
triplets.append({
'head': head,
'type': type_,
'tail': tail,
'head_type': '',
'tail_type': ''
})
debug(f"从 Neo4j 加载三元组: knowledge_base_id={knowledge_base_id}, 数量={len(triplets)}")
except Exception as e:
error(f"检索三元组失败: knowledge_base_id={knowledge_base_id}, 错误: {str(e)}")
return {
"status": "error",
"message": f"检索三元组失败: {str(e)}",
"triplets": [],
"timing": timing_stats,
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}
timing_stats["triplet_query"] = time.time() - triplet_query_start
debug(f"Neo4j 三元组查询耗时: {timing_stats['triplet_query']:.3f}")
if not triplets:
debug(f"知识库 knowledge_base_id={knowledge_base_id} 无匹配三元组")
return {
"status": "success",
"message": f"知识库 knowledge_base_id={knowledge_base_id} 无匹配三元组",
"triplets": [],
"timing": timing_stats,
"collection_name": "neo4j",
"document_id": "",
"status_code": 200
}
embedding_start = time.time()
texts_to_embed = query_entities + [t['head'] for t in triplets] + [t['tail'] for t in triplets]
embeddings = await self._get_embeddings(texts_to_embed)
entity_vectors = {entity: embeddings[i] for i, entity in enumerate(query_entities)}
head_vectors = {t['head']: embeddings[len(query_entities) + i] for i, t in enumerate(triplets)}
tail_vectors = {t['tail']: embeddings[len(query_entities) + len(triplets) + i] for i, t in enumerate(triplets)}
debug(f"成功获取 {len(embeddings)} 个嵌入向量({len(query_entities)} entities + {len(triplets)} heads + {len(triplets)} tails")
timing_stats["embedding"] = time.time() - embedding_start
debug(f"嵌入向量生成耗时: {timing_stats['embedding']:.3f}")
similarity_start = time.time()
for entity in query_entities:
entity_vec = entity_vectors[entity]
for d_triplet in triplets:
d_head_vec = head_vectors[d_triplet['head']]
d_tail_vec = tail_vectors[d_triplet['tail']]
head_similarity = 1 - cosine(entity_vec, d_head_vec)
tail_similarity = 1 - cosine(entity_vec, d_tail_vec)
if head_similarity >= ENTITY_SIMILARITY_THRESHOLD or tail_similarity >= ENTITY_SIMILARITY_THRESHOLD:
matched_triplets.append(d_triplet)
debug(f"匹配三元组: {d_triplet['head']} - {d_triplet['type']} - {d_triplet['tail']} "
f"(entity={entity}, head_sim={head_similarity:.2f}, tail_sim={tail_similarity:.2f})")
timing_stats["similarity"] = time.time() - similarity_start
debug(f"相似度计算耗时: {timing_stats['similarity']:.3f}")
unique_matched = []
seen = set()
for t in matched_triplets:
identifier = (t['head'].lower(), t['type'].lower(), t['tail'].lower())
if identifier not in seen:
seen.add(identifier)
unique_matched.append(t)
timing_stats["total_time"] = time.time() - start_time
info(f"找到 {len(unique_matched)} 个匹配的三元组,总耗时: {timing_stats['total_time']:.3f}")
return {
"status": "success",
"message": f"找到 {len(unique_matched)} 个匹配的三元组",
"triplets": unique_matched,
"timing": timing_stats,
"collection_name": "neo4j",
"document_id": "",
"status_code": 200
}
except Exception as e:
error(f"匹配三元组失败: {str(e)}")
timing_stats["total_time"] = time.time() - start_time
return {
"status": "error",
"message": f"匹配三元组失败: {str(e)}",
"triplets": [],
"timing": timing_stats,
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}
connection_register('Neo4j', Neo4jConnection)
info("Neo4jconnection registered")

355
llmengine/neo4j.py Normal file
View File

@ -0,0 +1,355 @@
import argparse
import os
from aiohttp import web
from llmengine.db_neo4j import Neo4jConnection
from llmengine.base_db import connection_register, get_connection_class
from appPublic.registerfunction import RegisterFunction
from appPublic.log import debug, error, info
from ahserver.serverenv import ServerEnv
from ahserver.webapp import webserver
import json
helptext = """Neo4j Connection Service API:
1. Initialize Endpoint:
path: /v1/initialize
method: POST
headers: {"Content-Type": "application/json"}
data: {}
response:
- Success: HTTP 200, {
"status": "success",
"message": "Neo4j 服务已初始化",
"collection_name": "neo4j",
"document_id": "",
"status_code": 200
}
- Error: HTTP 400, {
"status": "error",
"message": "<error message>",
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}
2. Insert Triples Endpoint:
path: /v1/inserttriples
method: POST
headers: {"Content-Type": "application/json"}
data: {
"triples": [
{"head": "entity1", "head_type": "Person", "type": "related_to", "tail": "entity2", "tail_type": "Organization"},
...
],
"document_id": "uuid",
"knowledge_base_id": "kb123",
"userid": "user123"
}
response:
- Success: HTTP 200, {
"status": "success",
"message": "成功插入 <nodes> 个节点和 <rels> 个关系",
"nodes_created": <int>,
"rels_created": <int>,
"collection_name": "neo4j",
"document_id": "<uuid>",
"status_code": 200
}
- Error: HTTP 400, {
"status": "error",
"message": "<error message>",
"collection_name": "neo4j",
"document_id": "<uuid>",
"status_code": 400
}
3. Delete Document Endpoint:
path: /v1/deletedocument
method: POST
headers: {"Content-Type": "application/json"}
data: {
"document_id": "uuid"
}
response:
- Success: HTTP 200, {
"status": "success",
"message": "成功删除 <nodes> 个节点和 <rels> 个关系",
"nodes_deleted": <int>,
"rels_deleted": <int>,
"collection_name": "neo4j",
"document_id": "<uuid>",
"status_code": 200
}
- Error: HTTP 400, {
"status": "error",
"message": "<error message>",
"collection_name": "neo4j",
"document_id": "<uuid>",
"status_code": 400
}
4. Delete Knowledge Base Endpoint:
path: /v1/deleteknowledgebase
method: POST
headers: {"Content-Type": "application/json"}
data: {
"userid": "user123",
"knowledge_base_id": "kb123"
}
response:
- Success: HTTP 200, {
"status": "success",
"message": "成功删除 <nodes> 个节点和 <rels> 个关系",
"nodes_deleted": <int>,
"rels_deleted": <int>,
"collection_name": "neo4j",
"document_id": "",
"status_code": 200
}
- Error: HTTP 400, {
"status": "error",
"message": "<error message>",
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}
5. Match Triplets Endpoint:
path: /v1/matchtriplets
method: POST
headers: {"Content-Type": "application/json"}
data: {
"query": "query text",
"query_entities": ["entity1", "entity2"],
"userid": "user123",
"knowledge_base_id": "kb123"
}
response:
- Success: HTTP 200, {
"status": "success",
"message": "找到 <count> 个匹配的三元组",
"triplets": [
{"head": "entity1", "type": "related_to", "tail": "entity2", "head_type": "", "tail_type": ""},
...
],
"timing": {
"neo4j_connect": <float>,
"entity_match": <float>,
"triplet_query": <float>,
"embedding": <float>,
"similarity": <float>,
"total_time": <float>
},
"collection_name": "neo4j",
"document_id": "",
"status_code": 200
}
- Error: HTTP 400, {
"status": "error",
"message": "<error message>",
"triplets": [],
"timing": {},
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}
6. Connection Endpoint:
path: /v1/connection
method: POST
headers: {"Content-Type": "application/json"}
data: {
"action": "initialize|insert_triples|delete_document|delete_knowledge_base|match_triplets",
"params": {...}
}
response:
- Success: HTTP 200, {"status": "success", ...}
- Error: HTTP 400, {"status": "error", "message": "<error message>", "collection_name": "neo4j", "document_id": "", "status_code": 400}
7. Docs Endpoint:
path: /docs
method: GET
response: This help text
"""
def init():
rf = RegisterFunction()
rf.register('initialize', initialize)
rf.register('inserttriples', insert_triples)
rf.register('deletedocument', delete_document)
rf.register('deleteknowledgebase', delete_knowledge_base)
rf.register('matchtriplets', match_triplets)
rf.register('connection', handle_connection)
rf.register('docs', docs)
async def docs(request, params_kw, *params, **kw):
return web.Response(text=helptext, content_type='text/plain')
async def initialize(request, params_kw, *params, **kw):
debug(f'Received initialize params: {params_kw=}')
se = ServerEnv()
engine = se.engine
debug(f'Engine: {engine}')
if engine is None or not isinstance(engine, Neo4jConnection):
error("Neo4jConnection not initialized")
return web.json_response({
"status": "error",
"message": "Neo4j 服务未启动",
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=400)
try:
result = await engine.handle_connection("initialize", params_kw)
debug(f'Initialize result: {result=}')
status = 200 if result.get("status") == "success" else 400
return web.json_response(result, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=status)
except Exception as e:
error(f'初始化失败: {str(e)}')
return web.json_response({
"status": "error",
"message": str(e),
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=400)
async def insert_triples(request, params_kw, *params, **kw):
debug(f'Received insert_triples params: {params_kw=}')
se = ServerEnv()
engine = se.engine
try:
required_fields = ['triples', 'document_id', 'knowledge_base_id', 'userid']
missing_fields = [field for field in required_fields if field not in params_kw or not params_kw[field]]
if missing_fields:
raise ValueError(f"缺少必填字段: {', '.join(missing_fields)}")
result = await engine.handle_connection("insert_triples", params_kw)
debug(f'Insert triples result: {result=}')
status = 200 if result.get("status") == "success" else 400
return web.json_response(result, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=status)
except Exception as e:
error(f'插入三元组失败: {str(e)}')
return web.json_response({
"status": "error",
"message": str(e),
"collection_name": "neo4j",
"document_id": params_kw.get("document_id", ""),
"status_code": 400
}, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=400)
async def delete_document(request, params_kw, *params, **kw):
debug(f'Received delete_document params: {params_kw=}')
se = ServerEnv()
engine = se.engine
try:
if not params_kw.get('document_id'):
raise ValueError("document_id 不能为空")
result = await engine.handle_connection("delete_document", params_kw)
debug(f'Delete document result: {result=}')
status = 200 if result.get("status") == "success" else 400
return web.json_response(result, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=status)
except Exception as e:
error(f'删除文档失败: {str(e)}')
return web.json_response({
"status": "error",
"message": str(e),
"collection_name": "neo4j",
"document_id": params_kw.get("document_id", ""),
"status_code": 400
}, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=400)
async def delete_knowledge_base(request, params_kw, *params, **kw):
debug(f'Received delete_knowledge_base params: {params_kw=}')
se = ServerEnv()
engine = se.engine
try:
required_fields = ['userid', 'knowledge_base_id']
missing_fields = [field for field in required_fields if field not in params_kw or not params_kw[field]]
if missing_fields:
raise ValueError(f"缺少必填字段: {', '.join(missing_fields)}")
result = await engine.handle_connection("delete_knowledge_base", params_kw)
debug(f'Delete knowledge base result: {result=}')
status = 200 if result.get("status") == "success" else 400
return web.json_response(result, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=status)
except Exception as e:
error(f'删除知识库失败: {str(e)}')
return web.json_response({
"status": "error",
"message": str(e),
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=400)
async def match_triplets(request, params_kw, *params, **kw):
debug(f'Received match_triplets params: {params_kw=}')
se = ServerEnv()
engine = se.engine
try:
required_fields = ['query', 'query_entities', 'userid', 'knowledge_base_id']
missing_fields = [field for field in required_fields if field not in params_kw or not params_kw[field]]
if missing_fields:
raise ValueError(f"缺少必填字段: {', '.join(missing_fields)}")
result = await engine.handle_connection("match_triplets", params_kw)
debug(f'Match triplets result: {result=}')
status = 200 if result.get("status") == "success" else 400
return web.json_response(result, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=status)
except Exception as e:
error(f'匹配三元组失败: {str(e)}')
return web.json_response({
"status": "error",
"message": str(e),
"triplets": [],
"timing": {},
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=400)
async def handle_connection(request, params_kw, *params, **kw):
debug(f'Received connection params: {params_kw=}')
se = ServerEnv()
engine = se.engine
try:
data = await request.json()
action = data.get('action')
if not action:
debug(f'action 未提供')
return web.json_response({
"status": "error",
"message": "action 参数未提供",
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=400)
result = await engine.handle_connection(action, data.get('params', {}))
debug(f'Connection result: {result=}')
status = 200 if result.get("status") == "success" else 400
return web.json_response(result, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=status)
except Exception as e:
error(f'处理连接操作失败: {str(e)}')
return web.json_response({
"status": "error",
"message": str(e),
"collection_name": "neo4j",
"document_id": "",
"status_code": 400
}, dumps=lambda obj: json.dumps(obj, ensure_ascii=False), status=400)
def main():
parser = argparse.ArgumentParser(prog="Neo4j Connection Service")
parser.add_argument('-w', '--workdir', help="Working directory")
parser.add_argument('-p', '--port', default='8885', help="Port to run the server on")
parser.add_argument('connection_path', help="Connection class path (e.g., Neo4j)")
args = parser.parse_args()
debug(f"Arguments: {args}")
Klass = get_connection_class(args.connection_path)
se = ServerEnv()
se.engine = Klass()
workdir = args.workdir or os.getcwd()
port = args.port
debug(f'{args=}')
webserver(init, workdir, port)
if __name__ == '__main__':
main()

View File

@ -1,82 +0,0 @@
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: FlagEmbedding in /share/vllm-0.8.5/lib/python3.10/site-packages (1.3.5)
Requirement already satisfied: torch>=1.6.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (2.6.0)
Requirement already satisfied: transformers>=4.44.2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (4.51.3)
Requirement already satisfied: datasets>=2.19.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (3.6.0)
Requirement already satisfied: accelerate>=0.20.1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (1.7.0)
Requirement already satisfied: sentence_transformers in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (4.1.0)
Requirement already satisfied: peft in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (0.16.0)
Requirement already satisfied: ir-datasets in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (0.5.11)
Requirement already satisfied: sentencepiece in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (0.2.0)
Requirement already satisfied: protobuf in /share/vllm-0.8.5/lib/python3.10/site-packages (from FlagEmbedding) (4.25.7)
Requirement already satisfied: psutil in /share/vllm-0.8.5/lib/python3.10/site-packages (from accelerate>=0.20.1->FlagEmbedding) (7.0.0)
Requirement already satisfied: numpy<3.0.0,>=1.17 in /share/vllm-0.8.5/lib/python3.10/site-packages (from accelerate>=0.20.1->FlagEmbedding) (2.2.5)
Requirement already satisfied: safetensors>=0.4.3 in /share/vllm-0.8.5/lib/python3.10/site-packages (from accelerate>=0.20.1->FlagEmbedding) (0.5.3)
Requirement already satisfied: packaging>=20.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from accelerate>=0.20.1->FlagEmbedding) (24.2)
Requirement already satisfied: pyyaml in /share/vllm-0.8.5/lib/python3.10/site-packages (from accelerate>=0.20.1->FlagEmbedding) (6.0.2)
Requirement already satisfied: huggingface-hub>=0.21.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from accelerate>=0.20.1->FlagEmbedding) (0.30.2)
Requirement already satisfied: pyarrow>=15.0.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (20.0.0)
Requirement already satisfied: fsspec[http]<=2025.3.0,>=2023.1.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (2025.3.0)
Requirement already satisfied: xxhash in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (3.5.0)
Requirement already satisfied: multiprocess<0.70.17 in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (0.70.16)
Requirement already satisfied: tqdm>=4.66.3 in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (4.67.1)
Requirement already satisfied: pandas in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (2.3.0)
Requirement already satisfied: dill<0.3.9,>=0.3.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (0.3.8)
Requirement already satisfied: filelock in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (3.18.0)
Requirement already satisfied: requests>=2.32.2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from datasets>=2.19.0->FlagEmbedding) (2.32.3)
Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (0.6.2)
Requirement already satisfied: sympy==1.13.1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (1.13.1)
Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.4.127 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (12.4.127)
Requirement already satisfied: triton==3.2.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (3.2.0)
Requirement already satisfied: jinja2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (3.1.6)
Requirement already satisfied: nvidia-cusolver-cu12==11.6.1.9 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (11.6.1.9)
Requirement already satisfied: typing-extensions>=4.10.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (4.13.2)
Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (12.4.127)
Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (2.21.5)
Requirement already satisfied: nvidia-cuda-cupti-cu12==12.4.127 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (12.4.127)
Requirement already satisfied: nvidia-cuda-runtime-cu12==12.4.127 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (12.4.127)
Requirement already satisfied: nvidia-cufft-cu12==11.2.1.3 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (11.2.1.3)
Requirement already satisfied: nvidia-cublas-cu12==12.4.5.8 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (12.4.5.8)
Requirement already satisfied: nvidia-curand-cu12==10.3.5.147 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (10.3.5.147)
Requirement already satisfied: nvidia-nvjitlink-cu12==12.4.127 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (12.4.127)
Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (9.1.0.70)
Requirement already satisfied: networkx in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (3.4.2)
Requirement already satisfied: nvidia-cusparse-cu12==12.3.1.170 in /share/vllm-0.8.5/lib/python3.10/site-packages (from torch>=1.6.0->FlagEmbedding) (12.3.1.170)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from sympy==1.13.1->torch>=1.6.0->FlagEmbedding) (1.3.0)
Requirement already satisfied: tokenizers<0.22,>=0.21 in /share/vllm-0.8.5/lib/python3.10/site-packages (from transformers>=4.44.2->FlagEmbedding) (0.21.1)
Requirement already satisfied: regex!=2019.12.17 in /share/vllm-0.8.5/lib/python3.10/site-packages (from transformers>=4.44.2->FlagEmbedding) (2024.11.6)
Requirement already satisfied: zlib-state>=0.1.3 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (0.1.9)
Requirement already satisfied: trec-car-tools>=2.5.4 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (2.6)
Requirement already satisfied: lz4>=3.1.10 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (4.4.4)
Requirement already satisfied: ijson>=3.1.3 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (3.4.0)
Requirement already satisfied: warc3-wet>=0.2.3 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (0.2.5)
Requirement already satisfied: inscriptis>=2.2.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (2.6.0)
Requirement already satisfied: beautifulsoup4>=4.4.1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (4.13.4)
Requirement already satisfied: lxml>=4.5.2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (4.9.4)
Requirement already satisfied: warc3-wet-clueweb09>=0.2.5 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (0.2.5)
Requirement already satisfied: unlzw3>=0.2.1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from ir-datasets->FlagEmbedding) (0.2.3)
Requirement already satisfied: scikit-learn in /share/vllm-0.8.5/lib/python3.10/site-packages (from sentence_transformers->FlagEmbedding) (1.7.0)
Requirement already satisfied: Pillow in /share/vllm-0.8.5/lib/python3.10/site-packages (from sentence_transformers->FlagEmbedding) (11.2.1)
Requirement already satisfied: scipy in /share/vllm-0.8.5/lib/python3.10/site-packages (from sentence_transformers->FlagEmbedding) (1.15.2)
Requirement already satisfied: soupsieve>1.2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from beautifulsoup4>=4.4.1->ir-datasets->FlagEmbedding) (2.7)
Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (3.10.10)
Requirement already satisfied: idna<4,>=2.5 in /share/vllm-0.8.5/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.19.0->FlagEmbedding) (3.10)
Requirement already satisfied: charset-normalizer<4,>=2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.19.0->FlagEmbedding) (3.4.1)
Requirement already satisfied: urllib3<3,>=1.21.1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.19.0->FlagEmbedding) (2.4.0)
Requirement already satisfied: certifi>=2017.4.17 in /share/vllm-0.8.5/lib/python3.10/site-packages (from requests>=2.32.2->datasets>=2.19.0->FlagEmbedding) (2025.4.26)
Requirement already satisfied: cbor>=1.0.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from trec-car-tools>=2.5.4->ir-datasets->FlagEmbedding) (1.0.0)
Requirement already satisfied: MarkupSafe>=2.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from jinja2->torch>=1.6.0->FlagEmbedding) (3.0.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from pandas->datasets>=2.19.0->FlagEmbedding) (2.9.0.post0)
Requirement already satisfied: tzdata>=2022.7 in /share/vllm-0.8.5/lib/python3.10/site-packages (from pandas->datasets>=2.19.0->FlagEmbedding) (2025.2)
Requirement already satisfied: pytz>=2020.1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from pandas->datasets>=2.19.0->FlagEmbedding) (2025.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from scikit-learn->sentence_transformers->FlagEmbedding) (3.6.0)
Requirement already satisfied: joblib>=1.2.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from scikit-learn->sentence_transformers->FlagEmbedding) (1.5.1)
Requirement already satisfied: async-timeout<5.0,>=4.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (4.0.3)
Requirement already satisfied: aiosignal>=1.1.2 in /share/vllm-0.8.5/lib/python3.10/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (1.3.2)
Requirement already satisfied: yarl<2.0,>=1.12.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (1.20.0)
Requirement already satisfied: multidict<7.0,>=4.5 in /share/vllm-0.8.5/lib/python3.10/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (6.4.3)
Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (2.6.1)
Requirement already satisfied: attrs>=17.3.0 in /share/vllm-0.8.5/lib/python3.10/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (25.3.0)
Requirement already satisfied: frozenlist>=1.1.1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (1.6.0)
Requirement already satisfied: six>=1.5 in /share/vllm-0.8.5/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.19.0->FlagEmbedding) (1.17.0)
Requirement already satisfied: propcache>=0.2.1 in /share/vllm-0.8.5/lib/python3.10/site-packages (from yarl<2.0,>=1.12.0->aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets>=2.19.0->FlagEmbedding) (0.3.1)

View File

@ -1,14 +0,0 @@
[Unit]
Wants=systemd-networkd.service
[Service]
WorkingDirectory=/share/run/entities
ExecStart=/share/run/entities/start.sh
ExecStop=/share/run/entities/stop.sh
StandardOutput=append:/var/log/entities/entities.log
StandardError=append:/var/log/entities/entities.log
SyslogIdentifier=entities
[Install]
WantedBy=multi-user.target

View File

@ -1,3 +0,0 @@
#!/bin/bash
/share/vllm-0.8.5/bin/python -m llmengine.bgererank -p 8887 /share/models/BAAI/bge-reranker-v2-m3

View File

@ -1,10 +0,0 @@
#!/bin/bash
# 查找并终止运行在端口 8887 上的进程
pid=$(lsof -t -i:8887)
if [ -n "$pid" ]; then
echo "终止进程: $pid"
kill -9 $pid
else
echo "未找到运行在端口 8887 上的进程"
fi

View File

@ -1,5 +1,10 @@
{ {
"filesroot": "$[workdir]$/files", "filesroot": "$[workdir]$/files",
"neo4j": {
"uri": "bolt://10.18.34.18:7687",
"user": "neo4j",
"password": "261229..wmh"
},
"logger": { "logger": {
"name": "llmengine", "name": "llmengine",
"levelname": "info", "levelname": "info",
@ -11,7 +16,7 @@
], ],
"client_max_size": 10000, "client_max_size": 10000,
"host": "0.0.0.0", "host": "0.0.0.0",
"port": 8887, "port": 8885,
"coding": "utf-8", "coding": "utf-8",
"indexes": [ "indexes": [
"index.html", "index.html",
@ -19,11 +24,35 @@
], ],
"startswiths": [ "startswiths": [
{ {
"leading": "/v1/bgererank", "leading": "/idfile",
"registerfunction": "bgererank" "registerfunction": "idfile"
}, },
{ {
"leading": "/v1/docs", "leading": "/v1/connection",
"registerfunction": "connection"
},
{
"leading": "/v1/initialize",
"registerfunction": "initialize"
},
{
"leading": "/v1/inserttriples",
"registerfunction": "inserttriples"
},
{
"leading": "/v1/deletedocument",
"registerfunction": "deletedocument"
},
{
"leading": "/v1/deleteknowledgebase",
"registerfunction": "deleteknowledgebase"
},
{
"leading": "/v1/matchtriplets",
"registerfunction": "matchtriplets"
},
{
"leading": "/docs",
"registerfunction": "docs" "registerfunction": "docs"
} }
], ],
@ -44,4 +73,4 @@
"url": "redis://127.0.0.1:6379" "url": "redis://127.0.0.1:6379"
} }
} }
} }

15
test/neo4j/neo4j.service Normal file
View File

@ -0,0 +1,15 @@
[Unit]
Wants=systemd-networkd.service
[Service]
Type=forking
WorkingDirectory=/share/run/neo4j
ExecStart=/share/run/neo4j/start.sh
ExecStop=/share/run/neo4j/stop.sh
StandardOutput=append:/var/log/neo4j/neo4j.log
StandardError=append:/var/log/neo4j/neo4j.log
SyslogIdentifier=/share/run/neo4j
TimeoutStartSec=300
[Install]
WantedBy=multi-user.target

2
test/neo4j/start.sh Executable file
View File

@ -0,0 +1,2 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=7 /share/vllm-0.8.5/bin/python -m llmengine.neo4j -p 8885 Neo4j &

12
test/neo4j/stop.sh Executable file
View File

@ -0,0 +1,12 @@
#!/bin/bash
PORT=8885
PID=$(lsof -t -i:$PORT)
if [ -n "$PID" ]; then
echo "找到端口 $PORT 的进程: PID=$PID"
kill -9 $PID
echo "已终止端口 $PORT 的进程"
else
echo "未找到端口 $PORT 的进程"
fi